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Abstract. The ionosphere shows a large degree of vari-

ability on time scales from hours to the solar cycle length.

This variation is associated with magnetospheric storms,
the Earth’s rotation, the season, and the level of so-
lar activity. To make accurate predictions of key iono-
spheric parameters all these variations must be consid-
ered. Neural networks, which are data driven non-linear
models, are very useful for such tasks. In this work we
examine if the F2 layer plasma frequency, foF2, at a sin-
gle ionospheric station can be predicted 1 to 24 hours in
advance by using information of past foF2 observations,
magnetospheric activity, and time as inputs to neural
networks. Particular attention has been paid to periods
when great geomagnetic storms were in progress with
the aim to develop a successful ionospheric storm fore-
casting tool.

© 2000 Elsevier Science Ltd. All rights reserved

1 Introduction

This work focuses on the prediction of the ionospheric
critical plasma frequency, foF2, on time scales from 1
hour to 24 hours ahead for a mid-latitude ionosonde
in Europe (Slough). We are especially interested in
predicting the development of foF2 during ionospheric
storms and, therefore, precursors for ionospheric storms
are studied. As long time series of both ionospheric and
magnetospheric data exist, and because any successful
system describing the time evolution of the ionosphere
should be a nonlinear model, we have selected an artifi-
cial neural network for the study.

The short term (hourly) variation of foF2 has been
studied extensively using neural networks. Models for
one hour ahead predictions have been developed by a
number of people (Altinay et al., 1997; Cander and Lam-
ming, 1997; Cander et al., 1998; Wintoft and Cander,
1999; Kumluca et al., 1999). Other studies concen-
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trate on predicting the noon foF2 value (Williscroft and
Poole, 1996; Francis et al., 1998). Finally, on these time
scales, efforts have been made to predict foF2 up to 24-
30 hours ahead (Wintoft and Cander, 1998; Francis et
al., 1999a,b). There is also a model for the prediction of
the monthly median foF2 several months ahead (Lam-
ming and Cander, 1998). These models are summarised
in Table 1. All the models share the common architec-
ture in that they use past values of foF2 as input. In
addition, some models also contain information about
solar activity (sunspot number or 10.7cm radio flux),
geomagnetic activity (AE, Dst, Kp, Ap), or time infor-
mation (season, local time). In a sense, much of this
additional information is already present in the foF2 in-
put time series. E.g., during solar maximum, the general
level of foF2 is higher than during solar minimum and
thus, based only on previous foF2 values, we already
have this information without the sunspot number. In
the same way, we can also use previous values of foF2
to determine the quiet ionosphere for, say, the next 24
hours. However, during disturbed conditions matters
become more complicated, and the ionosphere is often
in a disturbed state. If the disturbance is determined by
the internal dynamics of the ionosphere it should again
be possible to predict future foF2 values from past foF2
values. However, any disturbance that is driven, by e.g.
magnetospheric activity, must be modelled with some
external inputs other than foF2 itself.

It has been long known that ionospheric disturbances
are related to magnetospheric activity that depends on
the local time (Kirby et al., 1936) and season (Appleton
et al., 1937; Kirby et al., 1937). A review on ionospheric
F-region storms and their relation to magnetospheric ac-
tivity is given by Prolss {1995). Although many differ-
ent magnetospheric indices have been used in the above
mentioned neural networks, their effects on the predic-
tions have been minor. However, the reason is not the
absence of a magnetospheric-ionospheric relation, nor
that the neural networks are incapable of finding a re-
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Table 1. Different models for the prediction of foF'2. The models in the table are: A97, Altinay et al. (1997); C98, Cander et al. (1998);
W98, Wintoft and Cander (1998); W96, Williscroft and Poole (1996); F98, Francis et al. (1998); L98, Lamming and Cander (1998).

Model Network Input Qutput Stations

A97 MLFF foF2, Kp, LT foF'2 1 hour ahead Poitiers

C98 MLFF foF2, SSN, Ap Hourly foF2, 1 to 5 hours ahead Slough

Wag MLFF foF2, Ap Hourly foF2, 1 to 24 hours ahead Slough

W96 MLFF Season, SSN, aj Noon foF?2 Grahamstown
Fo8 RBF foF2 Hourly & monthly foF2, 1-30 steps ahead  Slough

Lo8 MLFF Month, LT, SSN  Monthly median foF2 Poitiers

lation, but rather it can be attributed to the choice of
training data and how the inputs are combined. For
only a fraction of the time series there is major magne-
tospheric activity, and if insufficient care is taken when
selecting the training data, these periods will be out-
numbered by periods characterising more settled condi-
tions.

Based on the ideas by Prolss (1995), it should be pos-
sible to predict 1onospheric F-region positive and nega-
tive storms for mid-latitude stations several hours in ad-
vance using AE as an input to a neural network. Nega-
tive lonospheric storms typically develop after the onset
of a geomagnetic storm during the preceding night. A
possible explanation for this effect is that the ionosonde
station moves with the rotation of the Earth under the
ionospheric disturbance zone. As the auroral zone starts
its expansion during the night, the ionosonde moves out
of the disturbance zone into the daytime side while the
magnetospheric storm is developing. Then, during the
following night, the ionosonde reaches the disturbance
zone, and the ionospheric negative storm starts. As the
disturbed ionosphere is also convected into the daytime,
the negative storm persists for the whole day. On the
other hand, positive ionospheric storms are mainly ob-
served in the daytime and are seen to follow the magne-
tospheric storm a couple of hours later. The hypothesis
is that a traveling atmospheric disturbance (TAD) is
generated by the magnetospheric storm, which travels
from high latitudes towards the equator. The positive
ionospheric storms should thus be predictable a couple
of hours in advance, while the negative storms should be
predictable up to a day in advance using magnetospheric
activity indices as precursors.

In this work, we will take account of all the known
variations that are seen in foF2 with a linear filter, and
then use a neural network to find the more complex be-
haviour during disturbed ionospheric conditions. The
foF2 data are taken from the ionosonde at Slough. As
precursor for the ionospheric storm, we use the auro-
ral electrojet index AE, as it has been used in many
studies relating magnetospheric activity to ionospheric
activity. Real time predictions of AE are available at
http://wuw.astro.lu.se/ henrik/.

2 A model for foF2 storm predictions
2.1  Quiet time foF2 variations

We assume that the ionospheric F2 layer will be in a
quiet condition when the daily average AE is below
a certain threshold. If we select this threshold to be
200 nT then, on average, 1 day in every 2.6 days will be
a quiet day. Clearly, even during days with a daily av-
erage AE of 200 nT there will be some level of activity.
This can, however, be handled by the network that we
will introduce in the next section. To develop a model
that actually describes the quiet ionosphere is a difficult
problem. Wrenn et al. (1987) developed a method for
describing the quiet ionosphere to study the evolution
of ionospheric storms. They concluded that simply us-
ing the monthly median foF2, which is updated once
a month, is too coarse. Instead, they used a running
monthly median model that only included magnetically
quiet days. In this work we use a similar procedure and
calculate the average foF2 for the past 7 days that are
magnetically quiet and use this as a first prediction of
foF2 one to two days ahead. Then, the difference be-
tween the predicted foF2 and the observed foF2 becomes

d(d+D,h) = foF2(d+ D,h)—
7

%ZfoFQ(d— Dih), (1)

i=1
where foF2(d, h) is the observed foF2 at day d and local
time h, D is one or two days ahead, and D; are the previ-
ous seven days with daily average AE less than 200 nT.
This model will basically remove the obvious variations
in foF2 that are related to the solar cycle, the season,
and the diurnal variations. The remaining § will be
composed of intrinsic variations of foF2 (linear and/or
nonlinear), geomagnetically driven variations, and other
miscellaneous variations (e.g. associated with changes in
solar EUV flux). An example of the observed foF2 and
the quiet time reference is given in Fig. 1.

2.2 The neural network inputs

The next step is to develop a neural network to predict
the § from Eq. 1. The inputs to the neural network that
we consider are derived from the time series of §, AE,
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Fig. 1. Observed (thin line) and quiet (thick line) foF2 for a few
days in July 1990. There is a clear negative ionospheric storm
during the 29th.

local time, and season. The motivations for the choices
of these parameters are described below.

The evolution of an ionospheric storm, following a ge-
omagnetic storm, depends on when, in the local time
sector, the geomagnetic storm starts. Severe geomag-
netic storms that begin before sunrise are followed by
negative ionospheric storm conditions during the whole
day (Prolss, 1993) (and references therein). On the
other hand, geomagnetic storms that begin in the local
daytime sector often lead to positive ionospheric storms
a couple of hours later.

The time of the year is another important factor that
determines the evolution of ionospheric storms associ-
ated with geomagnetic storms. In the summer the neg-
ative ionospheric storms extend all the way from the
polar region to the subtropics, while in the winter the
negative storm effects are restricted to higher latitudes.
The positive storms are also mainly observed in the win-
ter.

The different input parameters to the neural network
are arranged into a vector = with the elements z;, where
i denotes different input units. The first elements of «
are

z;=6(t-T), 1<i< N, 2)

where the time ¢ is in hours, 77 = 0 hours, 73 = 1 hours,
etc. to Ty = N — 1 hours. The following elements are

z; =AE(t —T;_n), N+ 1< ¢ <2N. (3)
The local time information is the sine of the local time,
ie.

h—Ti_an

z; = sin (27\' o

),2N+15z’§3N, (4)

where h is the local time in hours. Finally, the seasonal
information is coded as

H-T;_3n

i = 2
T cos(w 57365

),3N+1§i§4N. (5)
where H is the number of hours from hour 0, January
1%¢. With this choice of representing time, we see that
Eq. 4 for the local hours 23 and 00, which are close in
time, have values that are close. As the sine function is
double valued in any one cycle, two values are needed
to describe time uniquely. One approach is to use sin(t)
and cos(t). Here, we instead use a time window of sine
values and N in Eq. 4 must thus be larger or equal to
2. If N is larger than 2 there will be redundancy in
the input, however, for any local time the input vector
will be unique. The redundant units at the input can
improve on the learning, but that will not be further
examined here. The seasonal information is coded as
a time series of cosine values. During, e.g., a 24 hour
period, i.e. N = 24, the input values will all be similar,
as Eq. 5 recycles once every 8760 hours. Thus, during
winter the inputs will be close to +1 and during sum-
mer the inputs will be close to —1. Spring and autumn
will have values close to 0. This coding will work if we
assume that the ionospheric storms develop differently
in winter and summer, and that the spring and autumn
storms show similar behaviour.

It should be noted that the é and AE used for the
input have been normalized by subtracting the mean
and dividing by the standard deviation. Thus, both the
§ and AE used for input have zero mean unit variance.

As we are using linear output units we do not normal-
ize the 6 for the output. The desired output is

y=40(t+ 1), (6)

where 7 is 1 to 24 hours.

If we denote the function that a neural network, for
a 7 hours ahead prediction, implements as Fr, then the
relation becomes

§ = Fr(x), (7)

where ¢ is a prediction of y.
2.3 Training, validation, and test sets

Three independent data sets are extracted for the train-
ing (training set), optimization (validation set), and test-
ing (test set) of the neural networks (Haykin, 1994).
During training, the weights of the network are found
from the error backpropagation algorithm. Several dif-
ferent networks are trained where the type of inputs and
the number of hidden units are varied. Then the vali-
dation set is used to determine the optimal network.
Finally, the optimal network is tested on the test set
to determine how well it will work for new data. All
the following figures that show network predictions are
cases from the test set.
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Data from 1976 to 1985.
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Fig. 2. The distribution of é in 0.1 MHz bins. The thin line
represents the full data set over the years 1976 to 1985, while the
thick line is the sum of the training and validation sets.

The training and validation sets are chosen from the
years 1976 to 1985, which cover solar cycle 21. The
distribution of § for this period is shown by the thin
line in Fig. 2. We see that small values of § dominates
the distribution. As we are interested in storm periods,
and if we assume that large values of § represents storm
conditions, then a network that is trained on the full
data set will not be able to learn the prediction of storm
periods. To overcome this problem we select a subset
for the training and validation sets. Qur approach is to
limit the number of data points to 250 in each 0.1 MHz
bin. This will ensure that the number of storm hours
will increase as compared to the quiet hours. The thick
line in Fig. 2 shows the distribution of the training and
validation sets. Finally, the test set is chosen from the
years 1986 to 1994, which cover solar cycle 22.

3 Results

Here we describe the one hour ahead predictions and
then summarize the results for 6, 12, and 24 hour ahead
predictions.

3.1 One hour ahead predictions

For the 1 hour ahead predictions we try different com-
binations of §, AE, local time, and season as inputs and
also vary the length of the time delay line. The smallest
root mean square (RMS) error of the validation set is
obtained when all parameters are used as inputs. How-
ever, from examining several ionospheric storms, it is
seen that the predictions of storm onset are actually
lagging by approximately one hour. The information for
ionospheric storm onset that exists in AE seems to be
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Fig. 3. The change in RMS error when the number of hidden
units (S1) and the length of the time delay line are changed.

discarded in this type of model and it is not obvious why
this is the case. However, it can be noted, that the goal
of the training algorithm is to minimize the RMS error
of the predictions of all the data points in the training
set and this is apparently achieved from the past val-
ues of 4. Similar results are obtained, using the same
network architecture, in the prediction of the 10 minute
average local magnetic field data from solar wind data.
Again, using past local magnetic field data together with
solar wind data, leads to a shift in the predicted local
magnetic field at storm periods (Hans Gleisner, Private
communication}. The problem is related to the fact that
the correlation between 4(¢) and §(¢ + 1) is much higher
than AE(?) and 6(¢t + 1). The RMS error used on the
validation set is thus not a measure that should be used
alone to determine the optimal model. More elaborate
methods to examine this could also be employed as e.g.
discussed by Smith (1999). As we are mainly interested
to examine AE as a precursor of ionospheric storms we
will not include § in the input. This will lead to higher
RMS errors but improve the prediction at storm onset.

By varying the number of hidden units and varying
the length of the time delay line we determine the op-
timal network that has the smallest RMS error on the
validation set using the inputs AE, local time, and sea-
son. In Fig. 3, we see that the minimum error is obtained
with a network with 20 hidden neurons and a time delay
line of about 19 hours. The network thus has 3x 19 = 57
inputs.

Fig. 4 shows a prediction using the optimal network
for a period taken from the test set covering 7 days in
1990. The prediction of the negative ionospheric storm,
starting on the 28" closely follows the observed values.
In the lower panel the AE index shows major storm ac-
tivity. We can also examine the model response (dashed
curve) for geomagnetically quiet conditions by setting



P. Wintoft and Lj. R. Cander: lonospheric foF2 Storm Forecasting using Neural Networks 271

N
z
<
2
&

| ——  Pred.s

-~ - Pred. 8 for AE=0
-6 : T L . L L L
4 25 26 27 28 29 30 31 32

1500 Y T T T - - —

e M AL

24 25 26 27 28 29 30 31 32
Days in Jul 1990

Fig. 4. Predicted and observed § for one hour ahead predictions.
When AE is set to zero the model output is the dashed line.

AE=0 for all inputs. We see that there is a diurnal
variation and an offset towards positive values. If we
assume that the other inputs are independent of AE, we
can conclude that the quiet reference model does not
remove the quiet diurnal variation completely and that
our definition of “quiet” includes some activity.

Two other examples of ionospheric storms are given
in Figs. 5 and 6. The time span is again 7 days and
the axis limits are the same for easier comparison. The
storm period in August 1990 (Fig. 5) contain several
interesting features. A positive ionospheric storm begins
in the daytime of the 21°¢ and is then followed by a
negative storm. Except for the positive storm and for a
few hours on the 2379, the prediction closely follows the
observations. The model usually performs poorly for
positive ionospheric storms. The other storm period in
October 1990 shows severe negative ionospheric activity
where & reaches as low as —6 MHz. The onset of the
storm and the general level of disturbance are predicted.
However, on the 10t* and the 12¢*, the observed values
are much lower than the predicted values. Examining
the geomagnetic activity, we see that the AE index is
not extremely disturbed and is actually lower than for
the previous two examples.

3.2 Predictions 6, 12, and 24 hours ahead

The same procedure used to train and optimize the net-
works for the one hour predictions is also adopted for
the 6, 12, and 24 hour predictions. The optimal net-
works have 20 hidden units and time delay lines of 24 to
36 hours. We selected the October 1990 period to illus-
trate the accuracy of the predictions as shown in Figs. 7
to 9. We see that the 6 hour ahead prediction still ac-
curately predicts the storm onset and then follows an
evolution similar to the 1 hour ahead prediction. When
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Fig. 5. Predicted and observed é for one hour ahead predictions.
When AE is set to zero the model output is the dashed line.
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Fig. 7. Predicted and observed § for six hour ahead predictions.
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the prediction time is increased to 12 hours, we see a
shift of several hours at the storm onset and for the 24
hour predictions the model now fails. A similar devel-
opment can also be seen for the other periods that we
showed for the 1 hour predictions.

4 Discussion and conclusions

From the above results it is clear that information con-
cerning the magnetosphere is important for the predic-
tion of ionospheric storms in the F2 layer. Here, we
have used the hourly AE index to describe the magne-
tospheric storms. The index is convenient because real
time predictions are available and its inclusion is sound
from a physical point of view.

However, there are problems with the index as illus-
trated in Fig. 10. There is a strong UT variation of the
number of hours with high levels of activity. The peak
at UT16 could imply that the magnetic observatories
at the corresponding location dominate the derivation
of AE. This UT variation will affect the training of the
neural networks in a negative way. This might partly
explain the problem of the 1 hour prediction of positive
ionospheric storms. Another problem is that during se-
vere geomagnetic storms the auroral oval expands to
lower latitudes and the AE index, which is derived from
high latitude stations, shows a lower disturbance level
than is actually the case.

As the observed d are available in real time they should
also be used in a model for the prediction of foF2. As we
saw in the previous section it is not possible to make one
hour ahead predictions when both ¢ and AE are used
as inputs simultaneously. However, using only AE the
ionospheric storms are predicted but the overall error
increases. To overcome this problem, another network
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Fig. 8. Predicted and observed § for twelve hour ahead predic-
tions. When AE is set to zero the model output is the dashed
line.
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Fig. 9. Predicted and observed § for 24 hour ahead predictions.
When AE is set to zero the model output is the dashed line.
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Fig. 10. The relative distribution of geomagnetic storms as a
function of UT for the period 1976 to 1994. For AE there are 3767
points (hours) with AE>800 nT and the relative distribution of
these points in UT is shown by the solid line. In the same way the
relative distribution for Dst<-80 nT (3820 hours) and Kp>6 (1219
three-hourintervals) are shown by the dashed and the dash-dotted
curves, respectively.

could be used to predict the difference between the AE-
network and the observed § using past § as input.

For future work it proposed that inputs other than AE
are used. Other global magnetospheric indices could be
used, such as AU and AL, as they more closely describe
the actual physical processes in the ionosphere. Local
magnetic field measurements could also be used, which
have the advantage that they can easily be made avail-
able in real time. A further step could be to use solar
wind measurements directly. Of course, this relies on
the assumption that a solar wind monitor exists.
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