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Abstract. To test the ability and efficacy of neural
networks in short-term prediction of ionospheric param-
eters, this study used the time series of the ionospheric
foF2 data from Slough station during solar cycles 21
and 22. It describes different neural network architec-
tures that led to similar conclusions on one-hour- ahead
foF2 prediction. This prediction is compared with obser-
vations and results from lifear and persistence models
considered here as two special cases of the neural net-
works. © 1999 Elsevier Science Ltd. All rights reserved.

1 Introduction

Long time series of traditionally and in recent years au-
tomatically scaled data sets from ionosonde records has
become an excellent example of time series data with
which to test the abilities of neural networks in iono-
spheric studies. (Altinay et al., 1997; Cander and Lam-
ming, 1997; Poole and McKinnell, 1998; Cander et al.,
1998). With increased use of computers in the stages of
ionospheric data collection and processing, these stud-
les are now focused on real time analysis of ionospheric
behaviour and its short-term prediction. In accord with
standard theory, at least two parameters: the critical
frequency of the F2 layer, foF2, and the propagation
factor, M(3000)F2, are representative of the prevailing
tonospheric structures seen by ionosonde records and
used in electron-density height profile formulation. They
can be measured unambiguously and have been moni-
tored at a wide variety of ground stations. While an
extensive research has been done on the long-term spa-
tial and temporal changes of foF2 and M(3000)F2 and
their prediction, seeking to establish empirical relation-
ships in terms of solar activity indexes, the weight of ef-
fort is currently aimed on daily specification and hourly
forecasting of foF2 and M(3000)F2.
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The purpose of this study is to investigate the abili-
ties and efficiencies of different neural network architec-
tures in one-hour-ahead prediction of foF2 for different
geophysical conditions. The trained networks are anal-
ysed to determine the optimal input parameters for the
desired output. The success of these techniques is com-
pared with observations and other existing methods for
predicting the near future behaviour of foF2.

2 Data

Hourly foF2 data from Slough station are used for the
years of 1980, 1981, 1985 and 1986 to represent the iono-
spheric conditions during high (1980 and 1981) and low
(1985, 1986) solar activities in solar cycle 21. The data
set is divided into two separate sets: a training set which
is used to train the network, and a test set which is
used to determine the performance of the network. The
training sets were foF2 values in the whole of 1980 and
1985, and the test sets the whole of 1981 and 1986, re-
spectively. To investigate a possible neural network in
ionospheric foF2 prediction during the minimum phase
in solar cycle 22, Slough data for 1995 were chosen for
training during the whole year except September and
then prediction was tested at this month.

3 Neural network

For ionospheric application we have chosen a time-delay
feed-forward neural network with backpropagation learn-
ing algorithm (Haykin, 1994). The concepts of time-
delay line and backpropagation learning will be explained
in the following. The time-delay line is used to transform
the temporal signal into a spatial pattern, which is then
fed forward through the network to produce the output.
If the signal is z(¢) and the time-delay line extends over
n + 1 time steps then the input pattern becomes

ot = (z(t — nAt), ..., z(t)), (1)
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where p is the pattern number and At is the length
of the time step. The spatial pattern is fed forward
through the network according to

y = wg | Y wyzt |, (2)
i i

to produce the output signal y*. The weight w;; con-
nects input unit j to hidden unit ¢, and the weight v,
connects hidden unit ¢ to the output unit. The transfer
function ¢ should be a non-linear monotonic increasing
function, and here we choose g(a) = tanha.

The free parameters of the network are the weights v;
and w;; which are found through training with the back-
propagation algorithm on known input-output patterns.
The algorithm tries to minimise the summed squared er-
ror

E= %Zﬁj(du )y ®)

between the desired output d* and the network output
y* by adjusting the weights. This is done by calculating
the first derivatives of E with respect to the weights v;
and w;;. The weights are changed in the direction of
the negative gradient, i.e. in a direction so that F is
decreased, until the error F does not decrease further.
The length of the time-delay line is determined by
the order of the system being modelled and the noise
level in the data. If e.g. the unknown function that
the network should model is a sine curve we have to
solve the second order difference equation z(t + 1) =
f(z(t),z(t — 1)) (Swingler, 1996). Thus to solve this
problem the network inputs should be z(¢) and z(¢t - 1).
If the data is noisy then the time-delay line should be
extended so that the network can average out the noise.
Once the network has been trained the importance
of the different weights can be estimated with a method

called optimal brain damage (OBD) (LeCun et al., 1990).

Through the learning process we calculated the first
derivatives of the error E with respect to the weights.
Then by calculating the second derivatives we can esti-
mate how much the error would increase if we removed
a specific weight, and thus determine the importance of
the weight. Low-importance weights are removed and
the network is retrained. This method also allows us to
estimate which inputs are the most important.

4 One hour ahead predictions

Our goal here is to use different neural networks to
make 1-hour-ahead predictions of the critical plasma fre-
quency foF2 in the F2 layer. The two authors made two
different approaches with respect to the network archi-
tectures and the selection of training and testing data
sets. Before discussing the specific neural networks used
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Fig. 1. The figure shows how both the training error (dashed
line) and the test error (solid line) decreases when the length of
the time-delay line is increased. The computations are made for
time delay lines of length 1, 2, 12, 24, and 48 hours.

to make 1- hour-ahead predictions we will make a com-
parison with two simple models: persistence and linear
filters.

4.1 Comparison with persistence

The simplest approach to time-series modelling is the
use of persistence, i.e.

y(t +1) = y(1). (4)

If the signal is varying slowly the calculated RMS error
and correlation will be good although the predictions
are always lagging with one time step.

Starting with a neural network with only one input
unit and then successively increasing the number of in-
put units (i.e. the length of the time-delay line) and
retraining the neural network the RMS error on the test
set decreases as in Fig. 1.

In Fig. 2 we show an example of a prediction using
only one input unit, which is similar to what we expect
from persistence. From Fig. 1 we also see that there is
a comparably large decrease in the error going from 1
input unit to 2 input units. This is due to the fact that
when the input signal is (2(¢ — 1), z(¢)) both the signal
itself and the first derivative of the signal is available to
the neural network, and thus the network can use both
the current value and the slope to predict the next value
z(t+1). Increasing the length of the time-delay line has
two effects: higher order derivatives of the signal will be
available, and any random fluctuations of the signal will
be smoothed out.

4.2 Comparison with linear filters

We can also study the prediction accuracy by varying
the number of hidden units. The RMS error decreases
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Fig. 2. Observed {thick line) and predicted (thin line) foF2 for 3
days in 1981. The prediction is made with only the current value
of foF2 as input, i.e. one input unit.

when the number of hidden units is increased to 10, and
then levels out when more units are added (Fig. 3). The
input time-delay line is 24 hours long. With only one
hidden unit Eq.(2) becomes

yH = sooH
Y=g E wiZ;
j

which is equivalent to a linear filter.

(5)

4.3 Neural network pruning

Using a time delay line of the 50 previous hours of foF2
and applying the OBD method reveals that many input
units and hidden units can be removed without affecting
the prediction accuracy. Figure 4 shows the importance
of each input unit estimated from the training set. It
is clear that the measured foF2 values at hour ¢ and
t — 1 have the greatest influence on the prediction of
foF2(t + 1). We also see that foF2 around hours ¢ — 23
and ¢ — 47 are of importance due to the cyclic variation
of foF2.

This is in agreement with the results from (Cander
et al.. 1998) who used the hybrid time-delay multilayer
perceptron neural network in one hour ahead forecast-
ing of foF2 values at different European ionospheric sta-
tions. However, in their approach a background iono-
sphere has been involved and appropriate deviations
were used as input parameters at timest, t—1,{—23 and
¢t — 47. Similar results are also obtained by calculating
the autocorrelation function to predict foF2 (Muhtarov
and Kutiev, 1997). After pruning the network and con-
tinued training leaves us with a network with 3 hidden
units and 17 input units that performs as well as the
original network which had 10 hidden units and 50 in-
put units. The total number of weights has decreased
from 521 to 58.
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Fig. 3. The figure shows how the training error (dashed line) and
the test error (solid line) decreases when more hidden units are
used.

foF2(t+1)=F{foF2(1) foF 2(t-1).. . foF2(-49)]
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Fig. 4. The relative importance of the input units calculated on
the training set for the two networks trained on data from 1980
and 1985, respectively.



346 P. Wintoft and Lj. R. Cander: Short-Term Prediction of foF2

Tost data. input: (IoF2(1-49).... IoF2(t)). OuAput foF2(1s1).
- - r

15 : — v
——— Obeerved
1ah ——— _ Predidiad
13k 1
12t
np q
i’uo'
~
5 o1
ar
b
ok
sk
. N R . L . .
2200 2220 EX) 2200 2280 2300 220 200

Hours from 1981 0

Fig. 5. The observed (thick line) and the predicted {thin line)
foF'2 during solar maximum.

5 Results and discussion

The models presented here have been applied to the
ionospheric station at Slough. Figure 5 shows a com-
parison of the observed foF2 diurnal variations with
one-hour-ahead prediction by the neural network dur-
ing a five-day period in 1981. At the beginning of the
interval the agreement between observed and predicted
foF2 values was not very good because of highly dis-
turbed ionosphere. Later on the agreement improves.
The overall RMS error on the training set in 1980 was
0.581 MHz with a correlation of 0.976 and 0.661 MHz
with correlation of 0.97 on test set in 1981.

As can be seen in Fig. 6, the agreement between
observed and predicted foF2 during the five days in 1986
was very good even during disturbed conditions. The
overall RMS error on the training set in 1985 was 0.362
MHz with a correlation of 0.958 and 0.365 MHz with a
correlation of 0.956 on test set in 1986. Lower overall
RMS values reflect less perturbed ionosphere over the
vears of low solar activity.

Similar results has been obtained by the hybrid time-
delay multilayer perceptron neural network trained with
Slough foF2 data from January to August and Octo-
ber to December 1995 and tested on September 1995
set. Figure 7 shows an example of the comparison be-
tween neural network and observed foF2 values during
two days of disturbed ionosphere surrounding by a rel-
atively quiet periods.

Again predicted foF2 is in very good agreement with
the observations during the relatively quiet ionosphere
but less so during the disturbed period on 27 and 28
September. However, this agreement is still much better
than in case of monthly median values shown in Fig. 7
to demonstrate the complexity of the ionospheric day-
to day variability. The overall RMS error for September
1995 was 0.45 MHz.
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Fig. 6. The observed (thick line) and the predicted (thin line)
foF2 during solar minimum.
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Fig. 7. Observed. predicted and monthly median foF'2 values for -
26-30 September 1995.
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6 Conclusions

We have used time series prediction capabilities of ar-

tificial neural networks to develop a technique for 1- °

hour-ahead prediction of the key ionospheric parame-
ter: the critical frequency of F2 layer. It is shown that
the 1- hour-ahead predictions of foF2 can be made with
a high accuracy with different neural networks. In addi-
tion, it is demonstrated that the most important input
is a time-series of foF2 itself, which is able to describe
most of the variance in the 1-hour-ahead predicted foF?2
values. However, this is certainly not the case at iono-
spheric storm onset when the network degrades to per-
sistence and thus fails to make accurate predictions. To
further improve the predictions the onset of ionospheric
storms has to be modelled. As geomagnetic storms can
cause ionospheric storms through composition changes
and travelling atmospheric disturbances (Prolls, 1995)
it should be possible to predict the onset of the iono-
spheric storm from different hourly average geomagnetic
indices, such as Dst and AE. Although these indices
may not be available in real time they can be predicted
to a high accuracy when real-time solar wind data is
available (Lundstedt and Wintoft, 1994; Gleisner et al.,
1996). Such a study is in progress showing further ad-
vantages in using neural network as it allows a param-
eter study in which the various parameters represents
different physical properties.
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