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Abstract. Multilayer feed-forward neural network models
. are developed to make three-hour predictions of the plane-
tary magnetospheric Kp index. The input parameters for the
networks are the B,-component of the interplanetary mag-
netic field, the solar wind density n, and the solar wind ve-
locity V, given as three-hour averages. The networks are
trained with the error back-propagation algorithm on data se-
quences extracted from the 21 solar cycle. The result is a
hybrid model consisting of two expert networks providing
Kp predictions with an RMS error of 0.96 and a correlation
of 0.76 in reference to the measured Kp values. This result
can be compared with the linear correlation between V()
and Kp(t + 3 hours) which is 0.47. The hybrid model is
. tested on geomagnetic storm events extracted from the 2274
solar cycle. The hybrid model is implemented and real time
predictions of the planetary magnetospheric Kp index are
availableat http://www.astro.lu.se/~fredrikb.
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1 Introduction

The interaction between the solar wind and the Earth’s mag-
netic field generates electric currents in the ionosphere and
magnetosphere. These currents produce geomagnetic distur-
bances that are measured at ground-based magnetic obser-
vatories recording the three magnetic field components. The
mid-latitude observatories measure the amplitude of the vari-
ation of the horizontal components X and Y. The ampli-
tude is measured in nT’s and each observatory expresses the
most disturbed value of a three-hourly range by the index K.
The K index is given on a quasi-logarithmic scale from 0
(< 5nT)t0 9 (> 500 nT).

The planetary magnetospheric Kp index (Mayaud, 1980)
is evaluated using the K indices obtained from 13 selected
subauroral stations situated at geomagnetic latitudes between
48° and 63°. The three-hourly K values are first corrected
for the station’s geomagnetic latitude, since the geomagnetic
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activity is latitude-dependent, and then averaged to produce
the three-hour planetary magnetospheric Kp index. The Kp
index is given on a scale from 0 to 9 expressed in thirds (with
a total of 28 values):
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where 0 means very quiet conditions and 9 a very high activ-
ity. The measured Kp values obtained from the 13 ground
based magnetic observatories are not available until about
two months from present, while there is a preliminary Kp
index based on a subset of the observatories with about a 6
hour time lag.

Because of the time resolution and the geographic posi-
tions of the observatories the Kp index can only serve as an
overall measure of geomagnetic activity. The different storm
phases during solar maximum (Gosling et al., 1991) and dur-
ing the declining phase of the solar cycle (Tsurutani et al.,
1995) are thus not resolved in detail using the Kp index.
However, Kp is often used in solar-terrestrial studies.

The Lund Space Weather Model (Lundstedt, 1999) is used
in the development of neural network models making real
time predictions of the space weather and its effects. The
model contains several different modules for the prediction
of: the daily average solar wind velocity from solar magnetic
field observations (Wintoft and Lundstedt, 1999); the daily
Ap index from solar data and previous Ap index (Lundst-
edt, 1992); the hourly storm index Dst from solar wind data
(Wu and Lundstedt, 1997); the 10 minute average auroral-
electrojet index AE also from solar wind data (Gleisner and
Lundstedt, 1997); the plasma frequency foF2 from past val-
ues of foF2 and AE (Wintoft and Cander, 1999). The con-
struction of a neural network model to make real time three-
hour predictions of the planetary magnetospheric Kp is an-
other module in the Lund Space Weather Model. This con-
struction is of great importance since Kp enters into several
models that are intended for real time operation. Linear fil-
ters (Nagai, 1988) and neural networks (Koons and Gorney,
1991) have been developed for the prediction of energetic
electron fluxes at geosynchronous orbit based on Kp. Neural
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networks, specialized in predicting increased risks of anoma-
lies for the Meteosat-3 and the Tele-X satellites, have also
been developed using Kp as input (Wu et al., 1999). The Kp
index can also be used to determine the probability of high
levels of geomagnetically induced currents (GIC’s) in pow-
er grids. Boteler et al. (1990) showed that there is a relation
between a 3-hour GIC range value (/) and Kp that follows
the relation

Im = 0.319 0-536Kp

Thus, there is a great need for real time Kp.

2 Neural Network Model

The neural network model used is a multilayer feed-forward
network consisting of one input layer, one hidden layer, and
one output layer. Time sequences of the three solar wind
parameters (B,, n, and V') are given as input data. The acti-
vation function for the hidden nodes is a hyperbolic tangent
function whereas a linear combiner is used for the output
node. The resulting network output is a prediction of the
Kp index for the following three-hour period.

The network training utilizes the error back-propagation
algorithm where the actual response a(n) of the network,
when presenting the n'® training example, move closer to
the applied desired response d(n) in a statistical sense by
minimizing the summed square error

N
£=Z (n) — a(n)]?, (N

where IV denotes the total number of examples contained in
the training set.

The objective of the learning process is to adjust the free
parameters (i.e. the synaptic weights and biases) connecting
the different layers of the network to minimize £. The weight
update is performed after the presentation of all the training
examples that constitute an epoch. The weight correction
applied to the synaptic weight connecting neuron ¢ to neuron
j atepoch s is defined by the generalized delta rule:

8E(s)
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The gradient — —EEL determines the direction of search in
welght space and 77 1s the learning rate parameter. To accel-
erate descent in steady downhill directions and stabilize the
descent in directions that oscillate in sign, a momentum term
is included consisting of a momentum constant o and the
weight update from the previous epoch (Haykin, 1999).

One measure describing the network accuracy is the root-
mean-square error defined as
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Fig. 1. Comparison between the full set (10460 examples represented by
white bars) and the storm period set (3458 examples given as grey bars)
extracted from the 215¢ solar cycle. The storm period set contain the major-
ity of representative solar wind examples causing geomagnetic storms, i.e.
examples with negative B and high velocities.

Another measure is the correlation coefficient C' given by

N
1
C=—— - d(n) — (d))], 4
Nowo g [(a(n) ~ (@))(d(n) ~ (d))] @
where (a) and (d) are the actual and desired network output
averages; o, and o4 are their respective standard deviation.
We thus obtain a low RMSE and a correlation close to 1

when making accurate predictions.

3 Data Preparation

The three solar wind parameters B,, n, and V together with
the planetary magnetospheric Kp index for solar cycles 21
and 22 were downloaded from the National Space Science
Data Center (NSSDC). The 21%* solar cycle contain 10 years
of data (1976 to 1985) and the 22"¢ cycle contain 11 years
of data (1986 to 1996). Data gaps in the hourly solar wind
parameters of up to 3 consecutive hours were filled in with
linear interpolation. The network input parameters were then
averaged into three-hour values to attain uniformity with the
network output parameter Kp.

3.1 Training And Validation Sets

A network trained with the back-propagation algorithm will
bias its performance so that the most common input struc-
tures will be accurately predicted while predictions for other
structures will be poor. This means that storm events, which
are far outnumbered by quiet periods, will not be accurately
predicted. Therefore, two different sets are extracted from
the 215 solar cycle. The two sets are compared in Fig. 1.
The first set, represented by white bars, contains all exam-
ples for solar cycle 21. This set contains a majority of low
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Kp examples, with a peak at Kp = 2 as shown in the lower
right panel, and will thus be used in the construction of an
expert network A specialized in making predictions during
geomagnetically quiet periods.

The second set, given by grey bars in Fig. 1, contains storm
periods. We define a storm period as a continuous period
with one or more events with Kp > 5_ where the spacing
between individual events is 12 hours or less. The 12 hours
before the first event and the 12 hours after the last event
are also added to the period. This means that one storm
period contains at least 27 hours of data, with at least one
three-hour period with Kp > 5_. Typically, a storm peri-
od contains several events with Kp > 5_ and extends over
45 hours. With this definition of a storm period we general-
ly capture the complete evolution of individual storms. This
second set contains a majority of high Kp examples with a
peak at Kp = 4. This set will subsequently be used when
constructing an expert network B specialized in making pre-
dictions during geomagnetic storm periods.

Each set is further divided into two equal subsets: a train-
ing set and validation set. The training set is used as network
input/output during the training session and the validation set
is used during the subsequent validation session to find the
optimal network architecture.

3.2 Test Set

The averaged data for the 2274 solar cycle will be used to test
the final optimized network chosen. In this test geomagnetic
storm events will be compared with predictions. The test set
is hence kept as a temporal sequence.

4 Previous Work

Before we proceed with the network training it is interesting
to study previous work related to Kp predictions. A number
of empirical studies have been made attempting to find cor-
relations between solar wind parameters and magnetospheric
activity represented by the Kp index. The studies have been
focused mainly on nowcasting, in contrast to predictions, and
a frequently used relation is of the form

V)-C
pr=$)—02—‘, (5)

where >~ Kp is the sum of the 8 daily Kp values and (V')
is the daily average of the solar wind speed given in km/s.
Different values of the constants C; and Cs have been pre-
sented. Snyder et al. (1968) found that C1 = 262 km/s and
C> = 6.3; Hargreaves (1992) presented C; = 330+ 17 km/s
and Cy = 8.44 +0.74.

Pudovkin et al. (1980) included daily means of the IMF
parameters B, and o, given in nT’s, together with the daily
mean of V given in 102 km/s. They evaluated the relationship

> Kp=5.1+(1.03£0.03)((V)(08))
—(0.51£0.03)((V)(B,)). (6)
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Fig. 2. Linear correlation between the Kp index and the three solar wind
parameters as a function of time difference. The [Kp, V] correlations are
given as a solid lines, the [Kp, — B, ] correlation as dashed lines, and the
[Kp,n] correlations with dotted lines. The thick lines mark the correlations
for the full set and the thin lines represent correlations using only the storm
period set (cf. Fig. 1).

A different approach was carried out by Ballif et al. (1969).
They found, using data observed by Mariner 4, the empirical
relationship

(Kp) =9 [1 _ e—(<aBT,N>—o.ss)/7.7o] ’ o

where (Kp) is the daily average and (o Bt n) is a measure of
the daily average transverse fluctuations of the interplanetary
field.

Finally, we can also examine the linear correlations be-
tween the solar wind parameters and Kp for the two sets
described in the previous section (see Fig. 2). The corre-
lations between [B, (t),n(t), V (t)] at t hours and Kp(t + 3)
are [—0.40,0.20, 0.47] for the full set and [-0.40,0.15,0.29]
for the storm period set. The relatively high correlation be-
tween the solar wind velocity and Kp for the full set is due
to the majority of low activity periods where V' and Kp are
both relatively low and stable. These correlations are purely
linear and the aim of the neural network training procedure
is to extract non-linear correlations between the solar wind
parameter signatures and the Kp index.

5 Kp Prediction
5.1 Network Training And Optimization

The input layer of the neural network consists of solar wind
parameter units and the output layer consists of only one
unit, the predicted Kp value. To construct an optimized neu-
ral network model a training procedure is performed. In this
procedure neural networks with different lengths of input da-
ta sequences, i.e. different number of input units per solar
wind parameter, and different number of hidden units are
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Fig. 3. Validation RMS errors (solid lines) and correlation coefficients
(dashed lines) as a function of input data sequence length for neural net-
works trained and validated on data from the 215* solar cycle. The top panel
displays the results using the full validation set and the bottom panel dis-
plays the results using the storm period validation set.

trained using the error back-propagation algorithm. Each
trained network is then validated using the validation set.
Based on these validation results, an optimized network is
obtained. This procedure is first executed using the full set in
an attempt to find a network A specialized in making predic-
tions during geomagnetically quiet periods. The procedure
is then executed using the geomagnetic storm period set in
an attempt to find a network B specialized in making predic-
tions during geomagnetic storm periods.

The optimum number of hidden units is found to be 10 for
both network A and B. Figure 3 presents the RMSE’s (solid
lines) and correlation coefficients (dashed lines) as a function
of input data sequence length obtained using 10 hidden units.
The top panel displays the validation results using the full set
showing that the most accurate three hour prediction of the
Kp index is obtained with only the present solar wind data as
input. The optimal network A is thus unable to correlate solar
wind signatures of the past with the present to attain higher
accuracy in the Kp predictions. This result is explained by
the fact that the training set contains a majority of low activ-
ity examples where the solar wind parameters only influence
the present Kp index and not the future indices.

The bottom panel in Fig. 3 displays the validation results
using the storm period set and the most accurate predictions
are here obtained using a network with a six hour time delay,
i.e. with two inputs per parameter. The ability to correlate
solar wind signatures of the past with the present is now pos-
sible for the optimal network B. This is due to a training
set containing mainly storm examples where the solar wind
parameters influence both present and future Kp indices.
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Fig. 4. Comparison between the predictions made with the optimized net-
work A using the full validation set (top left panel and dashed line in bottom
panel) and the predictions made with the optimized network B using the
storm period validation set (top right panel and dotted line in bottom panel).
The solid line in the bottom panel shows the final prediction accuracy when
presenting the full validation set to the constructed hybrid model C.

5.2 Network Construction And Testing

The predictions made with the two optimized neural net-
works are presented in Fig. 4. As indicated in the bottom pan-
el, network A makes the most accurate low Kp predictions
and network B makes the most accurate high Kp predictions.
A hybrid model C is constructed by combining these two
optimized networks. The final output from model C is the
weighted average

Kp = Kpa/€h + Kppleh
1/e%4 +1/e%

; @®)

where Kp 4 and Kpp are the predicted Kp from networks
A and B, respectively, and the errors e4 and ep are taken
as the respective RMSE’s interpolated from the curves in
Fig. 4. The resulting prediction using this hybrid model is
indicated by the solid line in the bottom panel in Fig. 4.

Finally, the hybrid model is tested on geomagnetic storm
events extracted from the 22" solar cycle. The results are
displayed in Fig.s 5 and 6: The discrepancy between mea-
sured and predicted Kp at hour 39 in Fig. 5 might be ex-
plained by an influence of the negative (-5 nT) interplanetary
B, component (Gleisner and Lundstedt, 1997) for this pe-
riod. The discrepancy for the storm period between 51 and
60 hours is more difficult to explain. An interesting remark
though is that a similar storm course appears 24 hours later
as well as 48 hours later (not shown).

The final results from the neural network training/valida-
tion session and the test session are summarized in Table 1.
Although the RMSE is optimal using network A, we are in-
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Table 1. Final results obtained from the training/validation session and the test session. All results are obtained using the full data set except for the
training/validation results for network B where the storm data set is used. The results for network model C given in brackets are obtained presenting the

training/validation sets to the existing model.

Training

Validation Test

Network  Time delay (hours) RMSE  Correlation

RMSE  Correlation

RMSE  Correlation

A 3 0.920 0.740 0.929 0.757 0.900 0.765
B 6 1.058 0.641 1.010 0.660 1.220 0.764
c 3and 6 (0.947) ~ (0.745) (0.956)  (0.764) 0.985 0.768
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Fig. 5. Solar wind input data and Kp indices for a geomagnetic storm event
recorded by the IMP-8 satellite the 26h of April, 1989. The predicted Kp
indices are given by bars, and these are shaded when the geomagnetic activ-
ity is predicted to be high (Kp > 5_). The measured Kp indices are given
as circles.

terested in making accurate geomagnetic storm predictions
and this is achieved using the hybrid model C. Note that the
training and validation results for model C in Table 1 are ob-
tained presenting the data sets to the existing hybrid model.

5.3 Real Time Predictions

The final step is the real time implementation of the hybrid
model C. The latest solar wind data are first download-
ed from the NOAA’s Space Environment Center in Boulder.
These data are then presented to the hybrid model. The re-
sulting network output obtained using Eq. (8), together with
adherent solar wind data, are presented at http://www.
astro.lu.se/~fredrikb. This real time prediction is
updated every three hours. To illustrate the accuracy of these
predictions, the latest preliminary Kp values are downloaded
and compared with the predictions. These preliminary values
are not final and not up to date, but still a reliable measure of
our predictions.

hours

Fig. 6. Solar wind input data and Kp indices for a geomagnetic storm event
recorded by the IMP-8 satellite the 215¢ of February, 1992. The predicted
Kp indices are given by bars, and these are shaded when the geomagnetic
activity is predicted to be high (Kp > 5_). The measured Kp indices are
given as circles.

6 Conclusions

The results obtained in Sect. 5 indicate that it is difficult to
evaluate a single network making accurate Kp predictions
over the whole index interval from 0 to 9. This difficulty
is resolved by merging two expert networks into one hybrid
model. The first network is specialized on making low Kp
predictions and the second network on making high Kp pre-
dictions. The resulting hybrid model makes Kp predictions
with an accuracy indicated by the solid line in the bottom
panel in Fig. 4 and by the bottom line in Table 1. The network
testing examples in Fig. 5 and Fig. 6 illustrate this prediction
accuracy. The hybrid model is implemented and real time
predictions of the planetary magnetospheric Kp index are
available athttp://www.astro.lu.se/~fredrikb.
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