SAAPS

Satellite Anomaly Analysis and Prediction System

Test Plan

Version 1.0

ESA/ESTEC Contract No. 11974/96/NL/JG(SC)

P. Wintoft

February 28, 2001

Document status sheet

Test Plan, SAAPS					
Version	Date	Comment			
0.1	1 November 2000	Created			
0.2	14 November 2000	Major revision			
1.0	February 28, 2001	All tests documented			

Contents

1	Introduction	4
	1.1 Abbreviations	4
2	Test plan for database and database tools	5
	2.1 Check available data	5
	2.2 Check latest available data	5
	2.3 Inspect meta data	7
	2.4 Add a new database object	7
	2.5 Updating of the meta data	8
	2.6 Updating the database	8
	2.7 Read meta data	9
	2.8 Read data	9
	2.9 Export SAAPS data to ASCII	10
	2.10 Import ASCII data to the SAAPS database	10
	2.11 Meta data user interface	11
	2.12 Data user interface	11
	2.13 Remove data and meta data	11
	2.14 Short interrupts in network communication	11
	2.15 Long interrupts in network communication	12
	2.16 Data gaps in source data	12
3	Test plan for the satellite anomaly analysis module	13
	3.1 SAAPS database connection	13
	3.2 2-D data plotter	13
	3.3 Coordinate transformations	15
	3.4 Interpolation	15
	3.5 Time averages	15
	3.6 Superposed epoch analysis tool	16
	3.7 Correlation measures	17
	3.8 Cluster analysis	17
	3.9 Pattern search	18
	3.10 Guide lines	18
	3.11 Estimate best model	18

	3.12	The Jonathan test	18
4	Test	plan for the satellite anomaly prediction module	19
	4.1	Anomaly prediction tool	19
	4.2	Add new prediction models	19
	4.3	Model database	19
	4.4	Web access	20
	4.5	SAAM access	20
	4.6	Plot predictions	20
	4.7	List predictions	21
	4.8	Real time operation	21
	4.9	Select time period	21
	4.10	Manuals	21
	4.11	Help pages	21
5	UR	D reference tables	22
	5.1	Database and database tools	22
	5.2	Satellite anomaly analysis module	23
	5.3	Satellite anomaly prediction module	23

Introduction

SAAPS consists of three parts: the database and database tools (DB&T), the satellite anomaly analysis module (SAAM), and the satellite anomaly prediction module (SAPM). The DB&T runs both automatically by updating the database and manually from requests from the SAAM or SAPM. The SAAM and SAPM only runs manually and are connected to a user interface.

In the SAAPS Manual [*Wintoft*, 2000c] are described how the DB&T, SAAM, and SAPM are operated. There are also examples of how two perform various operations.

This document describes how SAAPS shall be tested for all the functions described in the URD's. The test plan is divided to test the three subsystems: DB&T, SAAM, and SAPM.

1.1 Abbreviations

The abbreviations used in this document are listed in Table 1.1.

Table	Table 1.1: Abbreviations used in the text				
SAAPS_DATA	The base directory of the SAAPS database				
SAAPS_MODELS	The base director of the SAAPS models				
SAAPS_HOME	database The base director of the compiled SAAPS code				
SAAPS_TEST	(.class files) The base director of the test files to be used for				
GUI	the testing of SAAPS Graphical User Interface				
DataInspector	A GUI to inspect the data in the database				

Test plan for database and database tools

The test of the database routines can only be performed on the SAAPS server as these are not accessible from the outside.

2.1 Check available data

The database consists of a number of files under the SAAPS home database directory, which we hereafter call SAAPS_DATA. The data files ends with the suffix .data and the meta data files with .meta. In Tables 1 and 2 in the database URD [*Wintoft*, 2000a] the data are listed.

2.1.1 Test

At the prompt do

cd \$SAAPS_HOME ls

The files listed in Table 2.1 shall exist with suffixes .data and .meta in SAAPS_DATA. Listing the directory shall verify this.

2.2 Check latest available data

Part of the database is updated in real time with between 10 minutes and 1 hour intervals. The real time data are listed in Table 2 in the database URD [*Wintoft*, 2000a]. In Table 2.2 the real time data files are shown together with the update frequency.

DB&T.CAP.1

DB&T.CAP.2

			0.1.0					-						
and	.meta											_		
Tabl	le 2.1 :	The	files	in th	ne da	tabase	. Each	file	exists	in	two	versior	\mathbf{ns} :	.data

OMNIDB	OMNI data
LANLDB	LANL particle data
GOES08partDB	GOES-08 particle data
GOES08xrayDB	GOES-08 x-ray data
GOES10partDB	GOES-10 particle data
GOES10xrayDB	GOES-10 x-ray data
ACEmagDB	ACE magnetic field data
ACEsweDB	ACE plasma data
KpDB	Estimated Kp
KpPredDB	Predicted Kp
DstDB	Predicted Kp
AEDB	Predicted Kp

Table 2.2: The files of the real time data with updating frequencies

GOES08partDB	$10 \min$
GOES08xrayDB	$10 \min$
GOES10partDB	10 min
GOES10xrayDB	$10 \min$
ACEmagDB	$10 \min$
ACEsweDB	$10 \min$
KpEstDB	1 hour
KpPredDB	1 hour

2.2.1 Test

At the prompt do

ExportAscii <name> yyyy.mm.dd 00:00:00 1440

where <name> is replaced by the names in Table 2.2. The yyyy, mm, and dd are replaced by the current year, month, and date, respectively. The command above will export the all data for the current day, more precisely it will export 1440 minutes (=24 hours) of data starting from hour 00UT.

2.3 Inspect meta data

The meta data shall contain the name of the database object, the start and end times, the time resolution, the field names and units, and a short description of the data.

2.3.1 Test

At the prompt type

ShowMetaData <file>

where *file* is replaced by the names in Table 2.1. The meta data should now be listed on the screen.

2.4 Add a new database object

To add a new database object the (system) user must create two Java classes. The classes are created by copying two template classes available on the SAAPS server. The user must then add the necessary information of the database object, such as the name of the object, the data fields, and the field units. The creation of the database object is described in the SAAPS Manual [*Wintoft*, 2000c].

After the creation of the Java source code for the new database object the two classes must be compiled.

Finally, the database objects are added to the database by executing the AddDatabaseObject command. This step will create the .data and .meta files in the database. The new object will automatically appear in any of the tools in SAPM or SAAM.

DB&T.CAP.3

DB&T.CAP.4 DB&T.CAP.7

2.4.1 Test

The compilation of the Java source code and the adding of the new database object is done with the command AddDatabaseObject. There exist a dummy database object for which this can be done. Do the following steps:

ls \$SAAPS_DATA
AddDatabaseObject DummyDB
ls \$SAAPS_DATA
ShowMetaData DummyDB

The first ls command should show that there are no DummyDB.* files. If they do exist, remove them by typing rm DummyDB.*. After AddDatabaseObject has been run the DummyDB.* files should now exist. Two new class files have also been created at

\$SAAPS_HOME/saaps/dbt/Dummy.class \$SAAPS_HOME/saaps/dbt/DummyDB.class

Finally, the contents of the meta data are explored with ShowMetaData.

2.5 Updating of the meta data

Every time new data are added to an existing database object the meta data will be updated with new end time.

2.5.1 Test

Examine the meta data with ShowMetaData. Then run the DummyUpdate1 program that will add new data to the DummyDB database. Run ShowMetaData again, and inspect and verify that the meta data has been updated.

2.6 Updating the database

When new data are appended to existing data there can arise different situation as described in Section 2.4.2.12 in the SAAPS SRD [*Wintoft*, 2000b].

The program DummyUpdate2 appends data for the situation when there is overlap in time between the SAAPS data and the new data.

The program DummyUpdate3 appends data for the situation when there is a gap in time between the SAAPS data and the new data.

DB&T.CAP.5

DB&T.CAP.8

2.6.1 Test

Export the data using

ExportAscii DummyDB 2001.01.01 00:00:00 1440

This should show all available data for one day. Note that the data ends at 03:59:00.

Run DummyUpdate2 followed by

ExportAscii DummyDB 2001.01.01 00:00:00 1440

The DummyUpdate2 has overlapping data for hour 03 with new values which should show up in the exported data. The data now also continues through hour 06.

Finally, run DummyUpdate3 and again followed by the ExportAscii. The DummyUpdate3 contain data from hour 08, while the data in the database ends at hour 06. The data for hour 07 should thus be filled in with NaNs representing data gaps.

2.7 Read meta data

The meta data can be read either locally on the SAAPS server or over the Internet using a web browser.

2.7.1 Test

The previous tests where ShowMetaData have been used should already have verified the the reading of the meta data works.

The reading of the meta data over the internet can be tested using a web browser. Launch the SAAPS models from a web browser. Select the data plotter tool. The database objects should be shown in one of the list windows. Select one object and click the Inspect button. The meta data should now be displayed in a new window.

2.8 Read data

The data can be read either locally on the SAAPS server or over the Internet using a web browser.

DB&T.CAP.9

DB&T.CAP.10

2.8.1 Test

The previous tests where ExportAscii have been used should already have verified the the reading of the data works.

The reading of the data over the internet can be tested using a web browser. Launch the SAAPS models from a web browser. Select the data plotter tool. The database objects should be shown in one of the list windows. Select one object and click the Get Data button. Verify that the data have been read by creating a plot.

2.9 Export SAAPS data to ASCII

The data in the SAAPS database can be exported to ASCII files.

2.9.1 Test

The previous tests using ExportAscii should have verified this function.

2.10 Import ASCII data to the SAAPS database

DB&T.CAP.13

DB&T.CAP.12

For an existing database object new data can be added by importing it from an ASCII file. The ASCII data must have the following format:

YYYY MM DD hh mm ss field_1 field_2 ... field_n

where the six first fields are the year, month, date, hour, minute, and second. The following n fields are the data fields. The number of data fields must match the number of fields defined in the database object definition, e.g. the Dummy.java file.

What can go wrong for continuous data? 1) ASCII data not continuous, 2) ASCII data not time ordered, 3) first data in ASCII data before the first date in the SAAPS database.

2.10.1 Test

A prepared ASCII file called DummyData.txt exist at SAAPS_TEST. Execute

ImportAscii DummyDB \$SAAPS_TEST/DummyData.txt

which should add new data to the DummyDB object. Verify that the data has been added to the database with ExportAscii.

11

2.11 Meta data user interface

Web browser?

2.12 Data user interface

Web browser?

2.13 Remove data and meta data

A database object is removed by simply deleting the .data and .meta files in the database with the UNIX command rm. The Java classes need not to be removed.

If there is an automatic update that is still running after the database object that has been removed it will be created automatically again.

2.13.1 Test

Start a web browser and visit the SAAPS user page. Start the data plotter tool and verify that the DummyDB item appears in the database objects list.

Remove the DummyDB.data and DummyDB.meta files by executing

rm DummyDB.*

at the command prompt. Reload the web page and verify that the object has disappeared from the list.

2.14 Short interrupts in network communication

DB&T.CON.2

Short interrupts in network communication shall not affect the database more than that the latest data will not be available. An interrupt is considered short when it lasts for a time period shorter than the time extent of the original ftp data. This means that when the interrupt has passed the missing data in SAAPS shall be filled with the data available at the source.

2.14.1 Test

The test is performed by physically disconnecting the SAAPS server from the network for one hour. During this hour the data in the database shall be examined. This verifies that the server is still running but the latest data are missing. The SAAPS server is the reconnected to the network and the database is examined again. The data for the period when SAAPS was disconnected shall now exist in the database.

DB&T.CAP.14

DB&T.CAP.15

DB&T.CAP.6 DB&T.CAP.11

2.15 Long interrupts in network communication

Long interrupts in network communication will affect the SAAPS database. The database will contain data gaps for the time period for which the interrupt lasted. An interrupt is considered long if the interrupt lasts for a time period that is longer than the time period for which the data at the source extends over.

2.15.1 Test

This test is carried out by physically disconnecting the SAAPS server from the network for four hours. This will affect the ACE and GOES data as the data sources only contain the latest two hours of data. After SAAPS has been reconnected with the network the database shall be examined. The data will show a two hour long period for which the data fields are set to NaNs.

2.16 Data gaps in source data

Occasionally there will be data gaps in the source data from the ftp site. The description of the data gaps varies from the different sources. In the SAAPS database the gaps shall always be described with NaNs (Not a Number). Sometimes the last data in the source contain a data gap while a few minutes later this gap has been replaced by a value.

2.16.1 Test

The propagation of the data gaps are tested by searching the data source for periods with data gaps, and exploring the data in the SAAPS database for the same period.

DB&T.CON.2

DB&T.CON.2

Test plan for the satellite anomaly analysis module

There are two aspects of the testing of the user interface. Firstly, there is the test of the expected behaviour of the tool when the user proceeds along the right steps. Secondly, there is the test of when the user misses some essential step and tries to proceed. The different tools usually contain several items that need to be specified by the user to be able to produce expected action. If the items in the interface have not been correctly set the user shall be notified.

3.1 SAAPS database connection

The satellite anomaly analysis module (SAAM) shall make use of the SAAPS database. SAAM is run from a web browser on a client machine and the data in the database at the SAAPS server shall be loaded over the Internet to the web browser.

3.1.1 Test

Launch the data plotter tool from the web browser and inspect that the database items listed in Table 2.1 appears in the database list window. Use the Inspect button on each item to see the details.

3.2 2-D data plotter

From the web browser the user can plot lines or points of 2-D data. The user SAA can select what data to plot and select the time periods. Situations when SAA the user uses the tool in the wrong way may appear and the user should be notified.

SAAM.CAP.1

SAAM.CAP.2 SAAM.CAP.3 SAAM.CAP.4

3.2.1 Test

The first part of the test tests the situation when the tool is used in the wrong way.

- No data selected Reload the data plotter tool in the web browser such that no item in the database list is selected. Push the Get Data button. A dialog shall appear informing that the user must first select a database item.
- **Dates outside range** Select an item from the database list. Then select start and end dates that are outside the database range, e.g. select data for next year. Push the Get Data button. The user shall be notified that the selected dates are outside the available range.
- No field selected Select an item from the database and valid start and end dates. Push Get Data button. A dialog shall appear that informs the user data are loading. The x- and y-axis fields are set with the available data fields. Do not select any fields. Push the Plot Data button. A dialog shall appear that informs the user the fields must be selected to be able to plot.
- **Create a plot** Now select one field for the x-axis, it is only possible to select one field for the x-axis. Select one or more fields for the y-axis. Push the Plot button. A window with the plot shall appear. Inspect the x- and y-axis labels and verify the the field names and units are present.
- **Resize window** The size of the window can be changed and the plot surface will fill the available space. Verify this.
- **Zoom in plot** It is possible to zoom in and out in the plot, and to restore it to the original zoom. In the plot surface place the cursor and click-and-drag with the mouse downwards and to the right. A rectangle shall appear that indicates the part of the plot that will fill the window. Release the mouse button and the new plot shall appear. Repeat the above steps but move the mouse upwards and to the left. Two rectangles shall now appear. The innermost indicates the size of the current plot, while the outermost indicates the size of the new plot. Finally, the original plot can be restored by selecting the Fill item from the Axis menu.
- **Logarithmic scaling** The scaling of the axes can be linear or logarithmic (base 10). Try using logarithmic scaling for both the x-axis and the y-axis. Any negative values shall be ignored.
- Line style Verify that the data points can be plotted with connected lines or points or both. The items are available under the Lines menu.

Close the plot window Verify that the window disappears when the windows close button is pushed.

3.3 Coordinate transformations

SAAM.CAP.5

For spacecraft with positional information the user can select to plot in different coordinate system. The positional information either comes from the data in the SAAPS database or from input from the user. The supported coordinate systems are: geographic (GEO) and magnetic (B-L).

3.3.1 Test

Launch the coordinate transformation tool from the web browser.

- **Database list** Select one item from the database list that consists of spacecraft data with positional information, e.g. GOES08DB. Select a valid time period and transform from GEO to BL.
- **User list** Enter positional information in GEO-R-PHI coordinates in the user list:
 - $\begin{array}{ccc} 3.0 & 0.0 \\ 4.0 & 15.0 \\ 5.0 & 30.0 \\ 6.0 & 45.0 \\ 7.0 & 60.0 \end{array}$

Select the transformation to go from GEO-R-PHI to B-L coordinates and push Plot.

3.4 Interpolation

Interpolation is useful when data are missing (data gaps). This is especially true for data that should be used for superposed epoch analysis.

3.4.1 Test

The test is performed under Section 3.6.

3.5 Time averages

To restrict the amount of data that are retrieved over the Internet form the SAAPS server to the client time averaging is useful. Time averaging also

SAAM.CAP.7

SAAM.CAP.6

comes in to use when different data with different samplings are to be used in a model.

3.5.1 Test

Launch the data plotter tool from the web browser.

- High resolution data Select the ACEmagDB data and get the data for the last three days. This will load the one minute resolution data. Select Time on the x-axis and Bt and then push Plot. This will create a plot with the one minute data.
- **One hour data** Again, Select the ACEmagDB data and get the data for the last three days. Click the Average check box and set the time resolution to one hour. Then push the Get Data button. The loading of the data should be quicker, but the same data fields shall appear. Select the Time and Bt fields and push Plot. Compare the two plots to ensure that they are related.

3.6 Superposed epoch analysis tool

The superposed epoch analysis (SEA) tool is used to study how a parameter varies around selected events. A list of events is given together with the event window time extent. The data for the selected parameter will then be loaded for each event extending over the time window size. To reduce the amount of data transmitted over the Internet the tool will work differently depending on whether the number of events is less than or equal to 5, or greater than 5. Any data gaps that are present in one or several events will also appear as data gaps when the average is calculated. The user may choose to remove data gaps with linear interpolation.

3.6.1 Test

Launch the SEA tool from a web browser.

Five or less events Enter the following events in the event list window:

 2001
 01
 01
 00
 00

 2001
 01
 02
 00
 00

 2001
 01
 03
 00
 00

 2001
 01
 04
 00
 00

 2001
 01
 05
 00
 00

SAAM.CAP.6 SAAM.CAP.8 Select the GOES08partDB item and the E>2.0 MeV field. Set the event window size to ± 12 hours (NB hours not days!). Then push the Plot Events button. A new window with five different curves should now be displayed. Select the Y Log from the Axis menu item. The daily variation of the electron flux should be seen. The average from these five curves can be obtained from the Display menu selecting Average.

- More than five events Add another event to the event list above by entering 2001 01 06 00 00. Then push the Plot Events button. Only a single curve should appear now. The curve represents the average of the six events.
- **Interpolation** Note that there is a data gap at around hours -9 and -8. This data gap is caused by a data gap in one of the events. The gap can be removed with interpolation. Check the Interpolate check box and push the Plot Events again.
- Average Extend the event window to cover ± 10 days. Check the Average check box and set the averaging to 1 hour. Push Plot Events. The window that appears should display one hour average data. Select the Points item from the Lines menu to verify this.
- **Random events** Set the number of random events to 10, then push the Generate Random List button. The Random List window should now contain ten events with dates between the first data in the events list plus the start window time, and the last date in the events list plus the end window time. Push the Plot Random Events should produce the curve with the random events.

3.7 Correlation measures

To support the tools for estimating the best prediction models, to find relations between different parameters, and to do pattern search correlation measures are used.

3.7.1 Test

See Section 3.9 and Section 3.11.

3.8 Cluster analysis

With cluster analysis we mean the possibility to plot data with choice of physical parameters against each other, and for spacecraft with given locations to plot in different coordinate systems. The data plotter tool shall support these options.

SAAM.CAP.10

SAAM.CAP.9

3.8.1 Test

See Section 3.2.

3.9	Pattern search	SAAM CAP 11
3.10	Guide lines	5/1/10/10/11
011	Estimate hest model	SAAM.CAP.12
3.11	Estimate best model	SAAM.CAP.13
3.12	The Jonathan test	

Test plan for the satellite anomaly prediction module

4.1 Anomaly prediction tool

The anomaly prediction tools are accessible from a web browser. When the web page is opened a list of available models shall be displayed. The user can then select one model and run it.

4.1.1 Test

In the web browser select one of the models and run it. Verify that it produces predictions based on the current time.

4.2 Add new prediction models

New models are added to SAAPS by putting the model file in the directory SAAPS_MODELS. The new model will automatically appear in the SAAPS window.

4.2.1 Test

Copy the the dummy model file into the model database by executing

cp \$SAAP_TEST/Dummy.model \$SAAPS_MODEL

Launch the web browser and verify that the Dummy item has appeared.

4.3 Model database

The directory SAAPS_MODEL shall contain one .model file for each model that exist in SAAPS.

SAPM.CAP.1

SAPM.CAP.2

19

SAPM.CAP.3

4.3.1 Test

Verify that the SAAPS_MODEL directory contain several .model files by listing the contents.

4.4 Web access

Each model in SAAPS should be available from a web browser.

4.4.1 Test

Start a web browser and verify that a list of SAAPS models appears. Select each model in turn and verify that it produces an output.

4.5 SAAM access

The analysis module (SAAM) shall have access to the models in the model database. This is trivially fulfilled as both SAAM and SAPM have access to the files under SAAPS_MODELS.

4.6 Plot predictions

It shall be possible to plot the predictions based on the models in the model database. Two modes shall be available: real time operation and predictions for selected time intervals.

4.6.1 Test

Launch the web browser and start the prediction tool.

- **Inspect** Select one model in the model list. Push the Inspect button. A window should appear that describes the model.
- **Real Time Operation** Select one model that updates frequently, e.g. every 10 minutes. Check the real time check box. Push the Plot button. A new window with the predictions should appear. Verify that the plot is updated with time intervals indicated by the model description.
- Selected Time Interval Uncheck the Real Time check box. The Start Time and End Time choice boxes now become enabled. Select one model. Select different star and end times. Verify that the plot window for the selected times appears. Verify also, that if the time are outside the valid range a dialog should appear informing the user about this.

SAPM.CAP.6

SAPM.CAP.5

SAPM.CAP.4

21

4.7	List predictions	SAPM.CAP.7
Should	it be implemented?	
4.8 See Sec	Real time operation tion 4.6	SAPM.CAP.8
4.9 See Sec	Select time period	SAPM.CAP.9
4.10 4.11	Manuals Help pages	SAPM.CAP.11

URD reference tables

	5.1	Database	and	database	tools
--	-----	----------	-----	----------	-------

Test id	URD id	Test reference
1	DB&T.CAP.1	2.1
2	DB&T.CAP.2	2.2
3	DB&T.CAP.3	2.3
4	DB&T.CAP.4	2.4
5	DB&T.CAP.5	2.5
6	DB&T.CAP.6	2.13
7	DB&T.CAP.7	2.4
8	DB&T.CAP.8	2.6
9	DB&T.CAP.9	2.7
10	DB&T.CAP.10	2.8
11	DB&T.CAP.11	2.13
12	DB&T.CAP.12	2.9
13	DB&T.CAP.13	2.10
14	DB&T.CAP.14	2.11
15	DB&T.CAP.15	2.12
15.1	DB&T.CON.1	??
15.2	DB&T.CON.2	2.14, 2.15, 2.16

Test id	URD id	Reference
16	SAAM.CAP.1	3.1
17	SAAM.CAP.2	3.2
18	SAAM.CAP.3	3.2
19	SAAM.CAP.4	3.2
20	SAAM.CAP.5	3.3
21	SAAM.CAP.6	3.4
22	SAAM.CAP.7	3.5
23	SAAM.CAP.8	3.6
24	SAAM.CAP.9	3.7
25	SAAM.CAP.10	3.8
$\overline{26}$	SAAM.CAP.11	3.9
27	SAAM.CAP.12	3.10
28	SAAM.CAP.13	3.11

5.2 Satellite anomaly analysis module

5.3 Satellite anomaly prediction module

Test id	URD id	Reference
29	SAPM.CAP.1	4.1
30	SAPM.CAP.2	4.2
31	SAPM.CAP.3	4.3
32	SAPM.CAP.4	4.4
33	SAPM.CAP.5	4.5
34	SAPM.CAP.6	4.6
35	SAPM.CAP.7	4.7
36	SAPM.CAP.8	4.8
37	SAPM.CAP.9	4.9
38	SAPM.CAP.10	4.10
39	SAPM.CAP.11	4.11

Bibliography

- [Wintoft, 2000a] Wintoft, P., Satellite Anomaly Analysis and Prediction System SAAPS WP 110 Database and Database Tool User Requirements Document, Version 1.1, ESA/ESTEC Contract 11974/96/NL/JG(SC), April 2000.
- [Wintoft, 2000b] Wintoft, P., Satellite Anomaly Analysis and Prediction System SAAPS Software Requirements Document, Version 1.0, ESA/ESTEC Contract 11974/96/NL/JG(SC), 18 August 2000.
- [Wintoft, 2000c] Wintoft, P., Satellite Anomaly Analysis and Prediction System SAAPS Manual, In preparation, 2000.