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Chapter 1

Introduction

This document will describe models and prediction techniques that could be
useful for the SAAPS.

Section 1.1 examines past work done in the predictions of satellite anoma-
lies and energetic electron flux in the magnetosphere. Chapter 2 describes
the neural networks. Chapter 3 explore the prediction of satellite anomalies.

1.1 Prediction of satellite anomalies

The prediction of satellite anomalies is a complex problem. The satellite
moves in a medium with highly varying properties which interacts with the
different parts of the satellite. Energetic protons penetrate the surface and
reach electronics which may lead to single event upsets (SEU). Energetic
electrons deposit their charge in dielectrics in which high voltages may build
up resulting in a discharge called internal electrostatic discharge (ESD). Less
energetic electrons stick to the surface which also can lead to an ESD. The
symtoms of these kind of events might be the detection of memory errors,
phantom commands, telemetry problems, and parts failure. As satellites
often spend many years in operation solar cycle effects and aging effects also
come into play. From a single anomaly it can be very difficult to come up
with the true cause of the event. However, having a database with a large
number of anomalies statitistics and modelling becomes possible.

In this report we do not address the problem of SEUs but instead focus
on charging type of anomalies.

Most attempts in anomaly predictions have focused on the prediction of
energetic (MeV) electrons. We will reference related work in the SAAPS
Technical Note 4 on the electron flux predictions [?]. Here, we will only cite
work directly related to predicting satellite anomalies.

A successful prediction model can be used for post-analysis, now-casting,
and forecasting. So even if the model can not make accurate forecasts it is
still useful.

3
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For internal charging type of anomalies a threshold model based on the
geosynchronous > 2 MeV daily electron fluence can be used [?]. The per-
formance for this type of model is examined in Section Section ??.

In the ESA project Study of Plasma and Energetic Electron environ-
ment and Effects (SPEE) [Koskinen et al., 1999] different techniques were
developed for the prediction of satellite anomalies. Using local Meteosat-3
electron flux data neural networks were developed to predict the occurence
of anomalies during the following 24 hours. The electron flux data was pre-
processed using a combination of techniques, such as principal component
analysis (PCA), linear filtering, and wavelet transforms. Other neural net-
work models were also developed using non-local data as input. The study
was also extended to include anomaly data from Tele-X. The non-local data
was the geomagnetic indices Kp and Dst, and the > 2 MeV electron flux
from the GOES satellites. However, the selection of training data was dif-
ferent from that of the local environment study. An anomaly day is defined,
as previously, if there are one or more anomalies during that day. But,
the non-anomaly is defined as follows: there should be no anomalies dur-
ing the anomaly day and the 9 days preceeding the no-anomaly day, i.e. no
anomalies during a 10 day interval. This means that all 10 day intervals
that contain one or more anomalies from day 1 to day 9 and no anomalies
during the 10th day will not enter the training set. With such a selection the
number of no-anomaly events and anomaly events becomes approximately
equal. The results indicated that the Kp index was the best input for an
anomaly prediction model, while the Dst index and the > 2 MeV electron
flux gave poorer results.

In the work by [H ilgers et al., 1999] local measurements of the electron
flux in the range of 200 to 300 keV onboard the Meteosat satellite were
used as input to a non-linear classification technique for the prediction of
the Meteosat anomalies. The input data are averaged to daily flux values
and the output is whether there will be any anomalies or not the following
day. It was realised that the training data should contain equal numbers
of no-anomaly data and anomaly data to avoid biasing during the training
phase. We will examine the effect of unbalanced training sets in Section 2.4.



Chapter 2

Artificial neural networks

2.1 Multi-layer feed-forward NN

The multi-layer feed-forward neural network (MLFFNN) consists of several
layers of neurons. The activation, i.e. the weighted sum of the inputs, for
neuron j at layer l is

v
(l)
j (n) =

p∑
i=0

w
(l)
ji y

(l−1)
i (n). (2.1)

The input at neuron i at layer l−1 for pattern n is y
(l−1)
i (n). The activation

is calculated by summing over all inputs (p neurons) multiplied with the
weights w(l)

ji . Then the activation is transformed to give the output at neuron
j at layer l

y
(l)
j (n) = ϕ(v(l)

j (n)), (2.2)

where the activation function ϕ can be chosen in several ways. It depends
on the layer and the problem type.

For hidden layers, we will always chose the hyperbolic tangent for the
activation function

ϕ(v) = a tanh bv = a
1 − e−bv

1 + e−bv
. (2.3)

The constants a and b determine the amplitude and slope of the activation
function. When v → ±∞ then ϕ → ±a. The slope at ϕ(0) is ab. In practice,
a and b are often set to 1. However, it can be interesting to examine when
b > 1, especially for classification problems.

For the output layer we will either choose the tanh function or a linear
function

ϕ(v) = bv. (2.4)

The choice depends on whether we want to solve a curve fitting problem
or a classification problem. For a curve fitting, or function approximation,
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problem it is generally better to chose a linear output function in order to
avoid saturation at large values. In the case of a classification problem the
tanh output function should be used as we wish to push to output to either
false or true (−a or +a).

In most cases it is sufficient to have one hidden layer. This type of
network will solve any continuous valued function approximation problem
[Cybenko, 1989] or any convex classification problem. A network with two
hidden layers will solve any (continuous or discontinuous) function approx-
imation problem or any (convex or non-convex) classification problem.

2.1.1 Error measures

To train a MLFFNN known input-output pairs must be available. If we call
the desired output for output neuron j to be dj(n) then the error between
the desired output and the network output becomes

ej(n) = dj(n) − oj(n), (2.5)

where oj(n) = y
(L)
j (n) and L is the output layer.

The standard error measure used in back-propagation learning is the
summed squared error. The instantaneous sum of squared errors is

E(n) =
1
2

∑
j

e2
j (n). (2.6)

The sum over j includes all the neurons in the output layer. Also summing
over all pattern n we get the sum of squared errors

E =
N∑

n=1

E(n). (2.7)

Finally, we may also use the average of squared errors

Eav =
1
N

E. (2.8)

Other error measures can also be used.

2.1.2 Back-propagation learning

The goal of the error-back-propagation algorithm is to minimize the error
E by adjusting the weights wji. This is achieved by changing the weights
so the that the error gradient ∂E/∂wji is negative. As the error is only
known at the output layer, the errors have to be back-propagated through
the preceding layers to be able to calculate an error gradient. The weights
are updated according to

w
(l)
ji (n + 1) = w

(l)
ji (n) + ∆w

(l)
ji (n), (2.9)
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where
∆w

(l)
ji (n) = ηδ

(l)
j (n)y(l−1)

i (n) + α∆w
(l)
ji (n− 1). (2.10)

Here η is the learning coefficient and α is the momentum term. The local
gradient δ

(l)
j (n) is

δ
(L)
j (n) = e

(L)
j (n)ϕ′(v(L)

j (n)) (2.11)

for a neuron at the output layer L and

δ
(l)
j (n) = ϕ′(v(l)

j (n))
∑
k

δ
(l+1)
k (n)w(l+1)

kj (n) (2.12)

for a neuron at hidden layer l. The prime function for a tanh activation
function is

ϕ′(v) = ab(1 − ϕ2(v)). (2.13)

2.1.3 Back-propagation with adaptive learning coefficient

The standard back-propagation algorithm is slow. To speed things up the
learning coefficient η can be varied during training. The idea is that each
weight should have its own learning coefficient. The coefficient should in-
crease when the error gradient ∂E/∂wji is negative, and decrease when the
gradient is positive. This can be achieved with

∆ηji(n) =




κ ifSji(n− 1)Dji(n) > 0
−βηji(n) ifSji(n− 1)Dji(n) < 0
0 otherwise

(2.14)

where Sji(n− 1) and Dji(n) are defined as, respectively

Dji(n) =
∂E(n)
∂wji(n)

(2.15)

and
Sji(n− 1) = (1 − ξ)Dji(n− 1) + ξSji(n− 1) (2.16)

where ξ is a positive constant. The procedure is called the delta-bar-delta
learning rule [Jacobs, 1988].

2.1.4 Marquardt-Levenberg algorithm

Both the standard backpropagation (BP) and the adaptive learning rate
BP algorithms may demand long training times. A more efficient train-
ing procedure is the Marquardt-Levenberg backpropagation (MBP) algo-
rithm [Hagan and Menhaj, 1994]. MBP is an approximation to the Newton
method

∆w = −[∇2E(w)]−1∇E(w), (2.17)
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where w are the weights and the error function E is the sum of squared
errors (Eq. 2.7). With this error function the terms in Eq. 2.17 can be
rewritten using the Jacobian matrix. Neglecting higher order terms the
Newton method becomes the Gauss-Newton method. MBP is a modification
of the Gauss-Newton method and can be expressed as

∆w = [JT (w)J(w) + µI ]−1JT (w)e(w). (2.18)

The parameter µ is multiplied by a factor β whenever a step would result in
an increase of the error function E, and divided by β whenever E decreases.
When µ is large the algorithm becomes the steepest descent with learning
rate η = 1/µ, and when µ is small the algorithm becomes the Gauss-Newton.

The Jacobian matrix is

J(x) =




∂e1(w)
∂w1

∂e2(w)
∂w1

. . . ∂eN (w)
∂w1

∂e1(w)
∂w2

∂e2(w)
∂w2

. . . ∂eN (w)
∂w2

...
...

. . .
...

∂e1(w)
∂wn

∂e2(w)
∂wn

. . .
∂eN (w)

∂wn



. (2.19)

The number of columns N is equal to the product of the number of training
examples Q and the number of layers L, thus N = Q× L. The number of
rows n is equal to the total number of weights in the network.

The advantage of the MBP is the much reduced training time. However,
it also demands more memory to store the elements of the Jacobian matrix.
We see that the size of the matrix depends both on the number of training
examples and the total number of weights.

2.2 Normalization

The input and output data to a neural network should always be normalized.
The type of normalization is problem dependent and can only be found after
that the data have been analyzed.

If the data varies over several orders of magnitude it is usually advisable
to take the logarithm. A histogram plot will show the distribution and
whether it is appropriate to do a log-normalization.

The data should also numerically lie in the range ±1. This can either be
made with a min-max-normalization or σ-normalization. Having a variable
x the min-max-normalized variable y is obtained from

y = 2
x− min(x)

max(x) − min(x)
− 1. (2.20)

The σ-normalization uses the mean 〈x〉 and standard deviation σ of x

y =
x− 〈x〉

σ
. (2.21)
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The σ-normalization is more appropriate for data with a approximately
a gaussian distribution, while the min-max-distribution is better for other
distributions. Other types of normalizations can also be used, including
non-linear normalizations [?].

Before determining the minimum and maximum values, or calculating
the mean and standard deviation, the data should be checked for outliers
and possible outliers should be removed.

2.3 Weight initialization

When the network has been created the weights and biases should be set to
some starting value before the training takes place. The simplest way is to
set the weights to some random values. However, the values of the weights
should not be too large as this might saturate the neurons causing slow
learning. The best way is to initialize to uniformely random values within
a small range [Haykin, 1994]. The small range should be something smaller
than 1 and is related to the number of inputs to the neuron. A good choice
is to use random values of uniform distribution from the range(

−1
n
, +

1
n

)
, (2.22)

where n is the number of inputs.

2.4 Training set selection

2.4.1 Classification problems

To train the network we need to carefully select the examples that should go
into the training set. Ideally we would like to find the decision boundary in
the input space that separates the two classes from each other (e.g. anomaly
and non-anomalies). According to [Swingler, 1996], it is not desirable to
have the distribution of training examples equal to the the distribution of
real world examples, as the class with more training examples will dominate
the training. As an example we know that one satellite experienced an
anomaly day in about 20% of the time. Thus by always saying that we
will have no anomalies we would be correct in 80% of the time. A network
trained on such a set will thus bias its performance to predict the no-anomaly
events. This will be further examined in Chapter 3.

The goal of the training algorithm is to minimize the error between the
desired output and the network output. The measure used is most often the
summed squared error (Eq. 2.7). Assume we have two classes, class A and
class B. The total number of class A examples is nA and the total number
of B examples is nB . Then the total number of examples is

n = nA + nB (2.23)
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and the fraction of examples of each class is

fA = nA
n

fB = nB
n

, (2.24)

where fA + fB = 1. Assume also that a fraction cA of the examples in class
A are correctly classified, and cB of the examples in class B. It should be
noted that cA ≤ 1 and cB ≤ 1, and that cA +cB ≤ 2. The fraction of correct
classification then becomes

c = fAcA + fBcB (2.25)
= fAcA + (1 − fA)cB. (2.26)

This should now be compared with the summed squared error defined in
Eq. 2.7. Rewriting Eq. 2.7 in terms of the individual contributions from the
two classes we get

E = EA + EB, (2.27)

where
EA = 1

2

∑
n∈nA

(d(n) − y(n))2

EB = 1
2

∑
n∈nB

(d(n) − y(n))2 . (2.28)

If we assume that we have a tanh transfer function at the output layer then
the squared error (d(n) − y(n))2 is either 0 for a correct classification or 4
for an incorrect classification. Thus if all A classification are wrong then
EA = 1/2nA4 = 2nA. Thus Eq. 2.27 can be written as

E = EA + EB (2.29)
= 2nA(1 − cA) + 2nB(1 − cB) (2.30)
= 2n[fA(1 − cA) + fB(1 − cB)] (2.31)
= 2n[fA(1 − cA) + (1 − fA)(1 − cB)] (2.32)
= 2n[fA + (1 − fA) − fAcA − (1 − fA)cB] (2.33)
= 2n[1 − {fAcA + (1 − fA)cB}]. (2.34)

The goal of the training algorithm is to minimize E which, from Eq. 2.34, is
identical to maximizing the total number of correct classifications c. Thus,
depending on how we choose fA it will effect the maximum value of c, and
also the values of cA and cB.

2.4.2 Continuous valued problems

For a continuous valued problem it is a bit more difficult to select the appro-
priate training data. In most real world cases the data is distributed with
one or several peaks and a tail towrds more extreme values. Just taking
the data set as it is to train the network will produce a model that is good
at predicting the values that are around the peak of the distribution (the
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mean value) while other points will not be modelled very well. However, it
is usually the points that are not at the distribution peak that are the most
interesting to predict as the may indicate e.g. some disturbed situation.

There are two ways to acheive a more balanced training set. The simplest
approach is to select a subset of the data so that the distribution of the
desired output becomes more flat. The other approach is to, manually or
automatically, select events from the data that contain interesting periods.

2.5 Training strategies

2.5.1 Training, validation and test

The data set that has been created fro the development of the neural network
should be divided into three subsets: a training set, a validation set, and a
test set. The training set is used to train the network, i.e. the process when
the weights are changed so that the error is minimized. The validation set is
used to determine the optimal network with respect to the number of hidden
neurons and the selection of input parameters. It can also be used to decide
when to stop training. Finally, when the optimal network has been selected
it can then be tested on the test set to find the performance that can be
expected in a real situation. The three sets should not have any overlapping
examples. The sets should also have similar statistics.

The three sets should contain a sufficient number of examples so that
the network can be properly trained, validated and tested. The number
of examples needed is problem related; a small simple network needs fewer
examples than a large complex network.

2.5.2 Training with minimum set size

Sometimes it is not possible to divide the data set into the three sets be-
cause the set is to small. Instead one can use only a training set and
then estimate the size of the network that will generalize well given the
size of the data set and the performance of the network. According to
[Baum and Haussler, 1989] a binary classifying network (output 0 or 1) with
one hidden layer will almost certainly provide good generalization if the
number of examples in the training set N satisfies

N ≥ 32W
ε

ln
32M
ε

(2.35)

where W is the number of weights in the network and M is the number
of hidden neurons. If ε is small then the network performs very well on
the training set. If the training set is small (N small) it is probable that
the network simply has memorized the data and will thus generalize poorly.
On the other hand if N is large it is likely that the network has found the



SAAPS TN:SAPM 16 October 2001 12

underlying general relationship. Equation 2.35 represents the worst-case
formula for estimating the training set size. In practice it seems that it is
sufficient to keep the first term and dropping the constants [Haykin, 1994]
so that we get

N >
W

ε
. (2.36)

We can now illustrate equations 2.35 and 2.36 with the anomalies on Meteosat-
3. During its operation the satellite experienced about 700 anomalies. If
we assume a network with 10 input units (e.g.

∑
Kp over 10 days) and 10

hidden units then M = 10 and W = (10 + 1) × 10 + 10 + 1. The minimum
number of examples needed as a function of ε/2 would vary according to
Figure 2.1. Using the criterion from Equation 2.35 we see that N should be
much larger than the 700 available examples, thus it can not be guaranteed
that the network will generalize. Using the relaxed criterion (Eq. 2.36) we
now see that the Meteosat-3 anomaly set is sufficiently large to be used for
training when the fraction of errors (ε/2) are larger than 0.1.

0.001 0.005 0.01 0.05 0.1 0.5
10

2

10
3

10
4

10
5

10
6

10
7

10
8

ε / 2

N

N > 32W/ε ln (32M/ε)
N > W/ε

Figure 2.1: The minimum number of examples (N ) as a function of the
fraction of errors (ε/2) for a network with 10 input units and 10 hidden
units.



Chapter 3

Prediction of satellite
anomalies

The prediction of satellite anomalies is a binary yes/no-problem, or a clas-
sification problem. This can be compared to the prediction of the electron
flux which is a continuous valued problem. The prediction of an anomaly is
either completely correct or completely wrong.

Essentially one would like to find a parameter space that can be separated
into two classes that corresponds to anomaly and no-anomaly, respectively.

We will first study a threshold model that uses daily electron fluence as
input, and then develop neural network models using the daily sum of Kp
as input.

In the following only daily predictions will be considered. The definition
of a no-anomaly day is a day that do not contain any anomaly events for
the satellite considered. An anomaly day is a day that contain one or more
anomalies.

3.1 Daily > 2 MeV fluence threshold level model

Energetic electrons can penetrate the shielding of a spacecraft and deposit
the charge in dielectric materials. If the electron flux stays at high levels
for an extended period charging can take place within the spacecraft. When
the charge reaches the electric breakdown level of the dielectric a discharge
occurs which may trigger an anomaly.

In a study by [Wrenn, 1995] it was found that geosynchronous commu-
nications spacecraft regularly experienced anomalies that were caused by
internal dielectric charging. By calculating the daily fluence of the > 2 MeV
electron flux, measured by the GOES satellites, threshold levels could be
determined when there was an increased risk of internal charging anomalies.
Two threshold levels were determined which is used to determine whether
the risk of anomalies are low (green), medium (yellow), or high (red). The

13
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levels are

flow = 5 · 107cm−2sr−1 (3.1)
fhigh = 5 · 108cm−2. (3.2)

The risk is then obtained from the observed daily MeV flunce f as

f < flow low
flow ≤ f < fhigh medium
fhigh ≤ f high

. (3.3)

3.2 S001 anomalies predicted using
∑

Kp

The S001 anomaly data set consists of 2280 reported events over the 15
year period from 1982 to 1996. Most of the events are related to the power
undervoltage indicator (A108) that tripped more than 1800 times. Daily
anomaly data are created by defining an anomaly as whether there has been
one or more reported events during a UT day. Subsequently, a no anomaly
is defined if there are no reported events during a day. In Figures 5.1 and 5.2
in [Wintoft, 2000] the relative mutual information I between

∑
Kp and daily

S001 anomalies were calculated. When all data was included a maximum of
I = 0.125 was achieved, while when selecting only the A108 anomalies the
maximum was increased to I = 0.155, a 24 % increase. The A108 anomalies
are primarily related to ESD effects and thus the stronger relationship to∑

Kp. Thus, the data set that is selected for the training of the neural
network consists only of the A108 anomalies.

Using only the A108 anomalies the total data set consists of 724 anoma-
lies. The total time period consists of 5152 days, on average the fraction of
anomaly days is 0.14. As discussed in Section 3.3 it is important to have a
balanced training set, and after balancing the data there are a total of 1448
examples with equal number of no anomalies and anomalies. This data set
is divided into three sets of equal sizes: training set, validation set, and test
set.

3.2.1 Nowcast

We then repeat the same analysis for the nowcasting network and the result
is shown in Figure 3.1. Comparing with Figure 3.4 it is seen that the errors
are lower by about 7 %, a significant decrease. We expect that the errors
should be lower from the analysis with the mutual information. The optimal
networks based on the three data sets are summarised in Table 3.1. As for
the one day forecast network, the RMS error for the nowcasting network is
also quite insensitive on the time delay T1.
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Table 3.1: The optimal nowcast networks determined from the three data
set.

Data set T1 S1 RMSE
Training -9 8 0.675

Validation -7 3 0.677
Test -3 5 0.684

−9 −8 −7 −6 −5 −4 −3 −2 −1 0
0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

R
M

S
 E

rr
or

T1 (days)

Nowcast from ΣK
p

a
b
c

Figure 3.1: The figure shows the RMS error for the various networks that
were trained for nowcasting using

∑
Kp as input. The labels are: a) training

set, b) validation set, and c) test set.

Table 3.2: The probability matrices for the nowcast network computed on
the four sets: training set, validation set, test set, and combined training,
validation, and test sets. Anomalies are the class A and no anomalies class
B.

Training Validation Test All
B A B A B A B A

B 0.348 0.152 0.357 0.143 0.353 0.147 0.353 0.147
A 0.141 0.359 0.139 0.361 0.116 0.384 0.132 0.368
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Based on the performance from the validation set we choose the network
with T1 = −7 days and S1 = 3 hidden neurons. Again we calculate the joint
probabilities which are shown in Table 3.2.

The conditional probabilities are given in Table 3.3. We see that the
probability that a predicted “no anomaly” is a “no anomaly” has increased
by 11 % based on the “All” set. The probability that a predicted “anomaly”
is an “anomaly” is increased by 3 %. However, the probability that an
observed “no anomaly” is predicted as a “no anomaly” is decreased by 2 %.
The probability that an observed “anomaly” is predicted as an “anomaly”
is increased by 19 %.

Table 3.3: The conditional probabilities for the nowcast network computed
on the four sets: training set, validation set, test set, and combined training,
validation, and test sets. The observed output is t and the predicted output
is y. The anomalies are class A and the no anomalies class B.

Training Validation Test All
P (t = B|y = B) 0.712 0.720 0.753 0.728
P (t = A|y = A) 0.703 0.716 0.724 0.714
P (y = B|t = B) 0.697 0.714 0.707 0.706
P (y = A|t = A) 0.718 0.722 0.769 0.736

The variations of the conditional probabilities as a function of |y| for the
nowcasting network are shown in Figure 3.2. The points in each bin now lies
much closer to each other as compared to Figure 3.5. The probabilities also
increase monotonically with increasing |y|. This suggests that the nowcast
network works in a well behaved way, which the one day forecast network
does not. For nowcasting with |y| > 0.375 the predictions have probabilities
of 0.8 or higher, and about 48 % of the examples are above that limit. The
results are also summarized in Table 3.4.

Table 3.4: The conditional probabilities calculated for five different bins
in |y|. Observations are denoted by t and predictions with y. The “no
anomaly” class is called B and the “anomaly” class A. The last column
shows the fraction of examples in each bin.

P (t|y) P (y|t)
P (B|B) P (A|A) P (B|B) P (A|A) P (|y|)

0 ≤ |y| < 0.125 0.489 0.520 0.520 0.489 0.175
0.125 ≤ |y| < 0.250 0.644 0.609 0.554 0.694 0.167
0.250 ≤ |y| < 0.375 0.681 0.699 0.653 0.725 0.181
0.375 ≤ |y| < 0.500 0.810 0.818 0.799 0.829 0.201

0.500 ≤ |y| 0.891 0.846 0.866 0.874 0.276

Finally, we examine what the typical input patterns are for the situations
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Figure 3.2: The conditional probabilities calculated for five different bins
in |y|. Observations are denoted by t and predictions with y. The “no
anomaly” class is called B and the “anomaly” class A. The dashed curve
shows the fraction of examples in each bin.

when the predictions have outputs that are y < −0.5, −0.2 < y < 0.2,
and y > 0.5, respectively. By selecting all the input examples that give
predictions in one of the three ranges we calculate the mean and standard
deviation for each input. The result is shown in Figure 3.3. For inputs
at time delays of about 7 days there is no significant difference for the
three levels of output. But when we come closer to the present time the
three curves starts deviating from each other. The clear “no anomaly”
predictions have small values of

∑
Kp at time 0, while the clear “anomaly”

predictions have large values of
∑

Kp. The hard-to-predicted cases have
close to constant values of

∑
Kp independent of the time delay and are very

close to the average of all
∑

Kp values of 22.

3.2.2 One day forecast

Next, we construct a network for nowcasting and 1 day forecasts. We expect
the nowcasting network to perform better than the 1 day forecast as the
maximum I is reached with zero time shift between

∑
Kp and the anomalies.

The free parameters of the network are the time delay (T1) at the input and
the number of hidden neurons (S1). The time delay is varied from -9 days
up to the current time, and the number of hidden units are set to 3, 5, or 8.
For each combination of T1 and S1 five networks are trained from different
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Figure 3.3: The average input values for different output values. The solid
curves are for inputs which give outputs y > 0.5, the dashed curves for
−0.2 < y < 0.2, and the dot-dashed curves for y < −0.5. The curves with
symbols are the averages and the curves without symbols are the ± one
standard deviation.
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initial weights using the Marquardt-Levenberg algorithm. The training is
stopped when the RMS error on the validation set starts increasing.

Figure 3.4 shows the result for the one day forecasts. Each point rep-
resents the RMS error for each network calculated on the three sets. The
training set has the smallest error for a network with T1 = −7 days, the
validation set at T1 = −9 days, and test set at T1 = −3 days. The spread
of the data points in the vertical direction for each T1 represents networks
with different S1 and different initial weights. The overall distribution is,
however, quite flat and do not depend strongly on T1. E.g. selecting the
lowest validation error for each T1 gives only a maximum difference of less
than 1 %. The choice of the value of T1 is thus not critical but we still
select the network with the minimum validation error. That network have
T1 = −9 days and S1 = 3 neurons. The optimal networks are summarised
in Table 3.5.

Table 3.5: The optimal one day forecast networks determined from the three
data set.

Data set T1 S1 RMSE
Training -7 8 0.726

Validation -9 3 0.735
Test -3 3 0.722

We can now proceed to analyse the performance of the selected network
(T1 = −9 and S1 = 3). We calculate the probability matrix (joint probabil-
ity) for the three data sets and also for the set containing all three sets. The
probabilities are shown in Table 3.6. We see that the probabilities for the
different sets are quite similar with some small deviations. Approximately
36 % of the no anomalies are predicted and 30 % of the anomalies.

Table 3.6: The probability matrices for the one day forecast network com-
puted on the four sets: training set, validation set, test set, and combined
training, validation, and test sets. Anomalies are the class A and no anoma-
lies class B.

Training Validation Test All
B A B A B A B A

B 0.365 0.135 0.363 0.137 0.357 0.143 0.362 0.138
A 0.212 0.288 0.181 0.320 0.184 0.316 0.192 0.308

We can now also calculate the conditional probabilities from the joint
probabilities. Let t be the observation and y the prediction from the net-
work. Let the class A equal the “anomaly” and B the “no anomaly” classes,
respectively. Then t can be either A or B. The conditional probability
P (t = A|y = A) says “What is the probability the there is an anomaly
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Figure 3.4: The figure shows the RMS error for the various networks that
were trained for one day forecasts using

∑
Kp as input. The labels are: a)

training set, b) validation set, and c) test set.

given that the network predicts and anomaly?”. We can also turn it around
to P (y = A|t = A) which states “What is the probability that the net-
work predicts an anomaly given that there is an anomaly?”. The result is
summarised in Table 3.7.

Table 3.7: The conditional probabilities for the one day forecast network
computed on the four sets: training set, validation set, test set, and com-
bined training, validation, and test sets. The observed output is t and the
predicted output is y. The anomalies are class A and the no anomalies class
B.

Training Validation Test All
P (t = B|y = B) 0.633 0.668 0.660 0.653
P (t = A|y = A) 0.681 0.700 0.689 0.690
P (y = B|t = B) 0.730 0.726 0.715 0.724
P (y = A|t = A) 0.577 0.639 0.632 0.616

One might suspect that some anomalies/no anomalies are easier to pre-
dict than others. Maybe some of the anomalies are more weakly related to∑

Kp than others. As the desired network output is -0.8 for no anomalies
and +0.8 for anomalies we can examine how close to these desired values
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that the actual output is for specific forecasts. If the output is close to ±0.8
it might be more accurate than a forecast that is close to zero. In Figure 3.5
the conditional probabilities are shown as a function of |y|. The predictions
have been binned according to the limits in the figure and then the condi-
tional probabilities have been calculated. Each bin contain approximately
300 examples, and the fraction of examples in each bin are indicated by the
dashed line. When |y| is close to zero the probabilities are close to 0.5, i.e.
close to pure guessing. All probabilities then increase with increasing |y|
up to |y| < 0.5, and for larger |y| there is a big spread in the probabilities.
The large spread can probably not be explained by the smaller number of
examples in the last bin, there are still about 130 example (9 % of 1448). We
see that almost all anomalies are predicted (P (y = A|t = A) is close to 1),
while very few of the no anomalies are predicted (P (y = B|t = B) is close
to 0). The best result is achieved when 0.375 < |y| < 0.5 which happens for
about 18 % of the examples. The results are summarized in Table 3.8.
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Figure 3.5: The conditional probabilities calculated for five different bins
in |y|. Observations are denoted by t and predictions with y. The “no
anomaly” class is called B and the “anomaly” class A. The dashed curve
shows the fraction of examples in each bin.

3.2.3 Summary

Two types of networks have been trained to predict S001 anomalies: one day
forecast network and nowcast network. From a previous analysis it has been
shown that a model for nowcasting should perform better than a forecasting
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Table 3.8: The conditional probabilities calculated for five different bins
in |y|. Observations are denoted by t and predictions with y. The “no
anomaly” class is called B and the “anomaly” class A. The last column
shows the fraction of examples in each bin.

P (t|y) P (y|t)
P (B|B) P (A|A) P (B|B) P (A|A) P (|y|)

0 ≤ |y| < 0.125 0.540 0.541 0.626 0.453 0.222
0.125 ≤ |y| < 0.250 0.598 0.570 0.641 0.524 0.238
0.250 ≤ |y| < 0.375 0.720 0.664 0.811 0.543 0.278
0.375 ≤ |y| < 0.500 0.755 0.896 0.910 0.725 0.175

0.500 ≤ |y| 0.500 0.852 0.100 0.981 0.087

network, this is also shown from the training and testing of the two networks.
The nowcasting network gives, on average, a 72 % probability for correct
predictions. However, for some predictions the results are poorer and for
others the results are better. There exist a relation between the absolute
value of the network output and the probability for correct prediction. When
the output is close to zero the probability drops to 50 %, i.e. not better than
guessing. When the output is below -0.375 or above +0.375 the probability
increases to 84 %.

3.3 S002 anomalies predicted using
∑

Kp

As the daily average electron flux has been predicted using
∑

Kp it is nat-
ural to develop an anomaly prediction model also using

∑
Kp. This was

examined by [Wu et al., 1998]. The analysis will be repeated here, however,
the definition of anomaly and non-anomaly will be slightly different. If one
or several anomalies occur during a day, then that day is an anomaly day.
If no anomalies occur during a day, that day is considered a non-anomaly
day.

During the satellites 7 year lifetime (1988-1995) it experienced 724 anoma-
lies. The anomalies were spread over 497 days, which should be compared
to the total number of 2678 days for this period. The fraction of days with
anomalies were thus 0.19. On average there were a day with anomalies every
5.4 days.

Using superposed epoch analysis one can discover trends in Kp that
precede the anomalies. Figure 3.6 shows how the 3-hour Kp starts increase
6 days before the anomaly and reaches the maximum value one day ahead.
However, one should also note the large variation of Kp for individual events
as indicated by the standard deviation (dashed lines).

As was shown in Section 2.4 the minimization of the summed squared
error is identical to maximizing the fraction of correct predictions c. The
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Figure 3.6: The 3-hour Kp superposed on anomaly events from S002. The
solid line shows the superposed values and the dashed lines are the standard
deviation.

problem is to select a suitable training set as the number of days with
anomalies is smaller than the number of days without anomalies.

To examine the effect of choosing the training and test sets with different
distributions we construct a network with 8 input units, 3 hidden units and
1 output unit. The inputs are 8 days of

∑
Kp and the output is whether

there is an anomaly or not the next day. This network size produced similar
errors on both the training set and the test set. A larger network always
led to very small errors on the training set and larger errors on the test
set. The total number of training examples has been fixed to ntr = 497
and then the fraction of anomalies in the training set f tr

A has been varied
over 0.1, 0.2, 0.3, 0.4, 0.5. This means that the number of anomalies in the
training set ntr

A has been 49, 99, 149, 198, 248. Then the networks have been
tested on the test set where also the fraction of anomalies f ts

A have been
varied over 0.1, 0.2, 0.3, 0.4, 0.5. The result is shown in Figure 3.7. When
we have a balanced training set (f tr

A = 0.5) then the fraction of correct
classifications is close to constant (cts ≈ 0.65) independent of the test set
distribution (f ts

A ). When the training set is unbalanced (f tr
A < 0.5) makes

cts dependent on the test set distribution, where cts increases for decreasing
f ts
A . The result is repeated in Figure 3.8 where each panel shows the varia-

tion of cts as a function of f ts
A for constant f tr

A . The solid-circle curves are
the slices for constant f tr

A from Figure 3.7. Also shown in the figure are the



SAAPS TN:SAPM 16 October 2001 24

fractions of correct classifications for anomalies (cts
A, dash-square curve) and

no-anomalies (cts
B dot-diamond curve), respectively. For the balanced train-

ing set cts ≈ cts
A ≈ cts

B. This we can understand from the training procedure
which minimizes E (Eq. 2.7) or equivalently maximizes

ctr = f tr
A ctr

A + f tr
B ctr

B . (3.4)

As f tr
A = f tr

B both cA and cB will be maximized with equal weights. With
an unbalanced training set cA and cB will be maximized unevenly, and if
f tr
A < f tr

B then the training algorithm will bias toward maximizing cB. This
is seen in Figure 3.8 and is mostly pronounced for the case when f tr

A = 0.1.
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Figure 3.7: The fraction of correct predictions on the test set (cts) as a
function of the fraction of anomalies in the training set (fatr) and the fraction
of anomalies in the test set (fats).

3.3.1 Nowcast

3.3.2 One day forecast

3.3.3 Summary
This sec-
tion will
be reor-
ganised
so that
it follows
the same
outline
as the
previous
section.
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Figure 3.8: The fraction of correct predictions on the test set (cts) as a
function of the fraction of anomalies in the test set (fats) for different values
of the fraction of anomalies in the training set (fatr) (solid curve). The
fraction of correct predictions for the anomalies (cats, dashed curve) and
the no-anomalies (cbts, dotted curve), respectively, are also shown.
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3.4 S003 anomalies predicted using
∑

Kp

3.4.1 Nowcast

3.4.2 One day forecast

3.4.3 Summary
Text will
be added
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