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Chapter 1

Introduction

This document will describe models and prediction techniques that could be
useful for the SAAPS.

Chapters 1.1 and 1.2 examines past work done in the predictions of satel-
lite anomalies and energetic electron flux in the magnetosphere. Chapters 2
and 3 describes the neural networks and the fuzzy systems. Chapters 4 and
5 explores the prediction of electron flux and satellite anomalies.

1.1 Prediction of electron fluxes

There are a large number of papers on the subject of energetic electron fluxes
in the magnetosphere. Surprisingly, there are only few papers that examine
the prediction of the electron flux. [Koons and Gorney, 1991] developed a
neural network to predict the daily average electron flux for energies > 3
MeV at geosynchronous orbit. The electron data was taken from the spec-
trometer for energetic electrons (SEE) on the (LANL?) 1982-019 satellite.
The input to the network was a time delay line over the past 10 days of
the daily sum Kp. The model was trained so that the day of the prediction
was the same as the last day of the sum Kp, thus the model was trained
to perform nowcasting. Then the model was tested to make one-day-ahead
forecasts. The network model showed that the predictions were significantly
more accurate than a linear filter. This model was extended to make pre-
dictions one day ahead and also included the electron flux itself at the input
[Stringer and McPherron, 1993]. One-hour-ahead predictions of the GOES-
7 electron fluxes has also been examined [Stringer et al., 1996]. The input
to the network was the Dst, Kp, the hourly average electron flux, and mag-
netic local time (MLT). [Freeman et al., 1998] developed a neural network
to predict the slope and intercept of the electron power law using Dst and
local time as inputs. The intercept (B) and the slope (M) relates the elec-
tron energy (E, in keV) to the differential flux (F , electrons/cm2 s sr keV)

4
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according to
logF = B +M logE.

The power law is valid for electron energies 100 keV to 1.5 MeV. The electron
data was taken from the (LANL?) 1984-129 satellite.

1.2 Prediction of satellite anomalies

To predict satellite anomalies introduces another level of difficulty as com-
pared to predicting the space environment. The occurrence of an anomaly
depends also on the design and age of the satellite, and different anomaly
types have different origin.

[Andersson et al., 1999] . . .



Chapter 2

Artificial neural networks

2.1 Mathematical notation

The notation and mathematics follow as closely as possible as that used by
[Haykin, 1994].

2.2 Multi-layer feed-forward NN

The multi-layer feed-forward neural network (MLFFNN) consists of several
layers of neurons. The activation, i.e. the weighted sum of the inputs, for
neuron j at layer l is

v
(l)
j (n) =

p∑
i=0

w
(l)
ji y

(l−1)
i (n). (2.1)

The input at neuron i at layer l−1 for pattern n is y(l−1)
i (n). The activation

is calculated by summing over all inputs (p neurons) multiplied with the
weightsw(l)

ji . Then the activation is transformed to give the output at neuron
j at layer l

y
(l)
j (n) = ϕ(v(l)j (n)), (2.2)

where the activation function ϕ can be chosen in several ways. It depends
on the layer and the problem type.

For hidden layers, we will always chose the hyperbolic tangent for the
activation function

ϕ(v) = a tanh bv = a
1− e−bv

1 + e−bv
. (2.3)

The constants a and b determine the amplitude and slope of the activation
function. When v → ±∞ then ϕ→ ±a. The slope at ϕ(0) is ab. In practice,
a and b are often set to 1. However, it is interesting to examine when b > 1,
especially for classification problems.

6



SAAPS TN:SAPM 17 January 2000 7

For the output layer we will either choose the tanh function or a linear
function

ϕ(v) = bv. (2.4)

The choice depends on whether we want to solve a curve fitting problem
or a classification problem. For a curve fitting, or function approximation,
problem it is generally better to chose a linear output function in order to
avoid saturation at large values. In the case of a classification problem the
tanh output function should be used as we wish to push to output to either
false or true (−a or +a).

In most cases it is sufficient to have one hidden layer. This type of
network will solve any continuous valued function approximation problem
[Cybenko, 1989] or any convex classification problem. A network with two
hidden layers will solve any (continuous or discontinuous) function approx-
imation problem or any (convex or non-convex) classification problem.

2.2.1 Error measures

To train a MLFFNN known input-output pairs must be available. If we call
the desired output for output neuron j to be dj(n) then the error between
the desired output and the network output becomes

ej(n) = dj(n)− oj(n), (2.5)

where oj(n) = y
(L)
j (n) and L is the output layer.

The standard error measure used in back-propagation learning is the
summed squared error. The instantaneous sum of squared errors is

E(n) =
1
2

∑
j

e2j (n). (2.6)

The sum over j includes all the neurons in the output layer. Also summing
over all pattern n we get the sum of squared errors

E =
N∑

n=1

E(n). (2.7)

Finally, we may also use the average of squared errors

Eav =
1
N
E. (2.8)

Other error measures can also be used.
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2.2.2 Back-propagation learning

The goal of the error-back-propagation algorithm is to minimize the error
E by adjusting the weights wji. This is achieved by changing the weights
so the that the error gradient ∂E/∂wji is negative. As the error is only
known at the output layer, the errors have to be back-propagated through
the preceding layers to be able to calculate an error gradient. The weights
are updated according to

w
(l)
ji (n+ 1) = w(l)

ji (n) + ∆w(l)
ji (n), (2.9)

where
∆w(l)

ji (n) = ηδ
(l)
j (n)y(l−1)

i (n) + α∆w(l)
ji (n− 1). (2.10)

Here η is the learning coefficient and α is the momentum term. The local
gradient δ(l)j (n) is

δ
(L)
j (n) = e(L)

j (n)ϕ′(v(L)
j (n)) (2.11)

for a neuron at the output layer L and

δ
(l)
j (n) = ϕ′(v(l)j (n))

∑
k

δ
(l+1)
k (n)w(l+1)

kj (n) (2.12)

for a neuron at hidden layer l. The prime function for a tanh activation
function is

ϕ′(v) = ab(1− ϕ2(v)). (2.13)

2.2.3 Back-propagation with adaptive learning coefficient

The standard back-propagation algorithm is slow. To speed things up the
learning coefficient η can be varied during training. The idea is that each
weight should have its own learning coefficient. The coefficient should in-
crease when the error gradient ∂E/∂wji is negative, and decrease when the
gradient is positive. This can be achieved with

∆ηji(n) =



κ ifSji(n− 1)Dji(n) > 0
−βηji(n) ifSji(n− 1)Dji(n) < 0
0 otherwise

(2.14)

where Sji(n− 1) and Dji(n) are defined as, respectively

Dji(n) =
∂E(n)
∂wji(n)

(2.15)

and
Sji(n− 1) = (1− ξ)Dji(n− 1) + ξSji(n− 1) (2.16)

where ξ is a positive constant. The procedure is called the delta-bar-delta
learning rule [Jacobs, 1988].



SAAPS TN:SAPM 17 January 2000 9

2.2.4 Marquardt-Levenberg algorithm

Both the standard backpropagation (BP) and the adaptive learning rate
BP algorithms may demand long training times. A more efficient train-
ing procedure is the Marquardt-Levenberg backpropagation (MBP) algo-
rithm [Hagan and Menhaj, 1994]. MBP is an approximation to the Newton
method

∆w = −[∇2E(w)]−1∇E(w), (2.17)

where w are the weights and the error function E is the sum of squared
errors (Eq. 2.7). With this error function the terms in Eq. 2.17 can be
rewritten using the Jacobian matrix. Neglecting higher order terms the
Newton method becomes the Gauss-Newton method. MBP is a modification
of the Gauss-Newton method and can be expressed as

∆w = [JT (w)J(w) + µI ]−1JT (w)e(w). (2.18)

The parameter µ is multiplied by a factor β whenever a step would result in
an increase of the error function E, and divided by β whenever E decreases.
When µ is large the algorithm becomes the steepest descent with learning
rate η = 1/µ, and when µ is small the algorithm becomes the Gauss-Newton.

The Jacobian matrix is

J(x) =




∂e1(w)
∂w1

∂e2(w)
∂w1

. . .
∂eN (w)

∂w1
∂e1(w)

∂w2

∂e2(w)
∂w2

. . . ∂eN (w)
∂w2

...
...

. . .
...

∂e1(w)
∂wn

∂e2(w)
∂wn

. . . ∂eN (w)
∂wn


 . (2.19)

The number of columns N is equal to the product of the number of training
examples Q and the number of layers L, thus N = Q× L. The number of
rows n is equal to the total number of weights in the network.

The advantage of the MBP is the much reduced training time. However,
it also demands more memory to store the elements of the Jacobian matrix.
We see that the size of the matrix depends both on the number of training
examples and the total number of weights.

2.3 Radial basis function neural networks

The radial basis function neural network (RBFNN) is also a feed forward
network, however, the hidden layer neurons use local transformation func-
tions instead of the global functions used in the MLFFNN. The network has
the following expression

F (x) =
N∑

i=1

wiϕ(‖x− xi‖), (2.20)



SAAPS TN:SAPM 17 January 2000 10

where xi, i = 1, 2, . . . , N , are the centres of the radial basis functions ϕ.
The norm ‖ · ‖ is taken as the Euclidean length. The activation function is
the Gaussian function

ϕ(r) = exp

(
− r2

2σ2

)
, (2.21)

where σ is the width of the function.

2.4 Normalization

2.5 Weight initialization

[Nguyen and Widrow, 1990]

2.6 Training set selection

2.6.1 Classification problem

To train the network we need to carefully select the examples that should go
into the training set. Ideally we would like to find the decision boundary in
the input space that separates the two classes from each other (e.g. anomaly
and non-anomalies). According to [Swingler, 1996], it is not desirable to
have the distribution of training examples equal to the the distribution of
real world examples, as the class with more training examples will dominate
the training. As an example we know that the Meteosat-3 satellite expe-
rienced an anomaly day in about 20% of the time. Thus by always saying
that we will have no anomalies we would be correct in 80% of the time. A
network trained on such a set will thus bias its performance to predict the
no-anomaly events. This will be further examined in Chapter 5.

The goal of the training algorithm is to minimize the error between the
desired output and the network output. The measure used is most often the
summed squared error (Eq. 2.7). Assume we have two classes, class A and
class B. The total number of class A examples is nA and the total number
of B examples is nB . Then the total number of examples is

n = nA + nB (2.22)

and the fraction of examples of each class is

fA = nA
n

fB = nB
n

, (2.23)

where fA + fB = 1. Assume also that a fraction cA of the examples in class
A are correctly classified, and cB of the examples in class B. It should be
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noted that cA ≤ 1 and cB ≤ 1, and that cA+cB ≤ 2. The fraction of correct
classification then becomes

c = fAcA + fBcB (2.24)
= fAcA + (1− fA)cB. (2.25)

This should now be compared with the summed squared error defined in
Eq. 2.7. Rewriting Eq. 2.7 in terms of the individual contributions from the
two classes we get

E = EA +EB, (2.26)

where
EA = 1

2

∑
n∈nA

(d(n)− y(n))2
EB = 1

2

∑
n∈nB

(d(n)− y(n))2 . (2.27)

If we assume that we have a tanh transfer function at the output layer then
the squared error (d(n)− y(n))2 is either 0 for a correct classification or 4
for an incorrect classification. Thus if all A classification are wrong then
EA = 1/2nA4 = 2nA. Thus Eq. 2.26 can be written as

E = EA + EB (2.28)
= 2nA(1− cA) + 2nB(1− cB) (2.29)
= 2n[fA(1− cA) + fB(1− cB)] (2.30)
= 2n[fA(1− cA) + (1− fA)(1− cB)] (2.31)
= 2n[fA + (1− fA)− fAcA − (1− fA)cB] (2.32)
= 2n[1− {fAcA + (1− fA)cB}]. (2.33)

The goal of the training algorithm is to minimize E which, from Eq. 2.33, is
identical to maximizing the total number of correct classifications c. Thus,
depending on how we choose fA it will effect the maximum value of c, and
also the values of cA and cB.

2.6.2 Continuous valued problem

2.7 Training strategies

2.7.1 Training, validation and test

The data set that has been created fro the development of the neural network
should be divided into three subsets: a training set, a validation set, and a
test set. The training set is used to train the network, i.e. the process when
the weights are changed so that the error is minimized. The validation set is
used to determine the optimal network with respect to the number of hidden
neurons and the selection of input parameters. It can also be used to decide
when to stop training. Finally, when the optimal network has been selected
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it can then be tested on the test set to find the performance that can be
expected in a real situation. The three sets should not have any overlapping
examples. The sets should also have similar statistics.

The three sets should contain a sufficient number of examples so that
the network can be properly trained, validated and tested. The number
of examples needed is problem related; a small simple network needs fewer
examples than a large complex network.

2.7.2 Training with minimum set size

Sometimes it is not possible to divide the data set into the three sets be-
cause the set is to small. Instead one can use only a training set and
then estimate the size of the network that will generalize well given the
size of the data set and the performance of the network. According to
[Baum and Haussler, 1989] a binary classifying network (output 0 or 1) with
one hidden layer will almost certainly provide good generalization if the
number of examples in the training set N satisfies

N ≥ 32W
ε

ln
32M
ε

(2.34)

where W is the number of weights in the network and M is the number
of hidden neurons. If ε is small then the network performs very well on
the training set. If the training set is small (N small) it is probable that
the network simply has memorized the data and will thus generalize poorly.
On the other hand if N is large it is likely that the network has found the
underlying general relationship. Equation 2.34 represents the worst-case
formula for estimating the training set size. In practice it seems that it is
sufficient to keep the first term and dropping the constants [Haykin, 1994]
so that we get

N >
W

ε
. (2.35)

We can now illustrate equations 2.34 and 2.35 with the anomalies on Meteosat-
3. During its operation the satellite experienced about 700 anomalies. If
we assume a network with 10 input units (e.g.

∑
Kp over 10 days) and 10

hidden units then M = 10 and W = (10 + 1)× 10 + 10 + 1. The minimum
number of examples needed as a function of ε/2 would vary according to
Figure 2.1. Using the criterion from Equation 2.34 we see that N should be
much larger than the 700 available examples, thus it can not be guaranteed
that the network will generalize. Using the relaxed criterion (Eq. 2.35) we
now see that the Meteosat-3 anomaly set is sufficiently large to be used for
training when the fraction of errors (ε/2) are larger than 0.1.
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Figure 2.1: The minimum number of examples (N ) as a function of the
fraction of errors (ε/2) for a network with 10 input units and 10 hidden
units.



Chapter 3

Fuzzy systems
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Chapter 4

Prediction of the electron
flux from solar wind data

As described in section 1.1, past attempts to predict the electron flux at
geosynchronuous orbit has always used the local electron flux and/or geo-
magnetic indices (Kp, Dst). The emphasis has been on high energies (MeV)
which are believed to give internal charging.

As it is the solar wind that drives magnetospheric activity it is natural
to develop models to predict the electron flux using solar wind data. As
the electron flux can vary by several orders of magnitude within 24 hours
the time resolution of the predictions should be better than one day. If a
time resolution of one hour is used the diurnal variation is captured. At the
same time we avoid difficulties associated with substorm dynamics and the
evolution of the solar wind from L1 to the Earth.

As the satellite measures the electron flux at a single point and at the
same time moves in the 24-hour orbit around the Earth, it is not possible to
distinguish between spatial and temporal variations. This problem can be
solved in two ways: (1) The input is the solar wind data with 24 different
networks predicting the flux in each local time sector; (2) The input is the
solar wind data and the local time, and only one network predicting the
flux in all local time sectors. It is difficult to say which method will work
best. The first method produces simpler networks as each network only
has to model one time sector. However, the training procedure is more
complicated as 24 networks need to be trained. The number of available
training examples will also be reduced by a factor of 24. The second method
will produce a more complex network as it also has to model the local time
variation. The training procedure is simpler, only one network, but the final
prediction accuracy might be poorer as a collection of simpler specialized
networks usually perform better than one general network. Both approaches
shall be examined. The first approach is also similar to the hybrid neural
network [Haykin, 1994].

15
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Figure 4.1: The solar wind magnetic field (Bz), density, velocity, and the
> 0.6 MeV electron flux over 30 days in 1998.
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Chapter 5

Prediction of satellite
anomalies

The prediction of satellite anomalies is a binary yes/no-problem, or a clas-
sification problem. This can be compared to the prediction of the electron
flux which is a continuous valued problem. The prediction of an anomaly is
either completely correct or completely wrong.

Essentially one would like to find a parameter space that can be separated
into two classes that corresponds to anomaly and no-anomaly, respectively.

5.1 Daily predictions

5.1.1 Meteosat-3 anomalies predicted using
∑

Kp

As the daily average electron flux has been predicted using
∑
Kp it is nat-

ural to develop an anomaly prediction model also using
∑
Kp. This was

examined by [Wu et al., 1998]. The analysis will be repeated here, however,
the definition of anomaly and non-anomaly will be slightly different. If one
or several anomalies occur during a day, then that day is an anomaly day.
If no anomalies occur during a day, that day is considered a non-anomaly
day.

During the satellites 7 year lifetime (1988-1995) it experienced 724 anoma-
lies. The anomalies were spread over 497 days, which should be compared
to the total number of 2678 days for this period. The fraction of days with
anomalies were thus 0.19. On average there were a day with anomalies every
5.4 days.

Using superposed epoch analysis one can discover trends in Kp that
precede the anomalies. Figure 5.1 shows how the 3-hour Kp starts increase
6 days before the anomaly and reaches the maximum value one day ahead.
However, one should also note the large variation of Kp for individual events
as indicated by the standard deviation (dashed lines).

18
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Figure 5.1: The 3-hour Kp superposed on anomaly events from Meteosat-3.
The solid line shows the superposed values and the dashed lines are the
standard deviation.
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As was shown in Section 2.6 the minimization of the summed squared
error is identical to maximizing the fraction of correct predictions c. The
problem is to select a suitable training set as the number of days with
anomalies is smaller than the number of days without anomalies.

To examine the effect of choosing the training and test sets with different
distributions we construct a network with 8 input units, 3 hidden units and
1 output unit. The inputs are 8 days of

∑
Kp and the output is whether

there is an anomaly or not the next day. This network size produced similar
errors on both the training set and the test set. A larger network always
led to very small errors on the training set and larger errors on the test
set. The total number of training examples has been fixed to ntr = 497
and then the fraction of anomalies in the training set f tr

A has been varied
over 0.1, 0.2, 0.3, 0.4, 0.5. This means that the number of anomalies in the
training set ntr

A has been 49, 99, 149, 198, 248. Then the networks have been
tested on the test set where also the fraction of anomalies f ts

A have been
varied over 0.1, 0.2, 0.3, 0.4, 0.5. The result is shown in Figure 5.2. When
we have a balanced training set (f tr

A = 0.5) then the fraction of correct
classifications is close to constant (cts ≈ 0.65) independent of the test set
distribution (f ts

A ). When the training set is unbalanced (f tr
A < 0.5) makes

cts dependent on the test set distribution, where cts increases for decreasing
f ts
A . The result is repeated in Figure 5.3 where each panel shows the varia-

tion of cts as a function of f ts
A for constant f tr

A . The solid-circle curves are
the slices for constant f tr

A from Figure 5.2. Also shown in the figure are the
fractions of correct classifications for anomalies (ctsA, dash-square curve) and
no-anomalies (ctsB dot-diamond curve), respectively. For the balanced train-
ing set cts ≈ ctsA ≈ ctsB. This we can understand from the training procedure
which minimizes E (Eq. 2.7) or equivalently maximizes

ctr = f tr
A c

tr
A + f tr

B c
tr
B . (5.1)

As f tr
A = f tr

B both cA and cB will be maximized with equal weights. With
an unbalanced training set cA and cB will be maximized unevenly, and if
f tr
A < f

tr
B then the training algorithm will bias toward maximizing cB. This

is seen in Figure 5.3 and is mostly pronounced for the case when f tr
A = 0.1.

5.2 Hourly predictions
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function of the fraction of anomalies in the training set (fatr) and the fraction
of anomalies in the test set (fats).
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Figure 5.3: The fraction of correct predictions on the test set (cts) as a
function of the fraction of anomalies in the test set (fats) for different values
of the fraction of anomalies in the training set (fatr) (solid curve). The
fraction of correct predictions for the anomalies (cats, dashed curve) and
the no-anomalies (cbts, dotted curve), respectively, are also shown.
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