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1. Introduction

This document will describe models and prediction techniques that could be useful
for the SAAPS.

Sections 2 and B examines past work done in the predictions of satellite anomalies
and energetic electron flux in the magnetosphere. Sections % and % describes the neural
networks and the fuzzy systems.

2. Prediction of electron fluxes

There are a great number of papers on the subject of energetic electron fluxes in the
magnetosphere. Surprisingly, there are only few papers on the subject of prediction the
electron flux. F_Ko_o_ms_ and Gorney, 1991] developed a neural network to predict the
daily average electron flux for energies > 3 MeV at geosynchronous orbit. The electron
data was taken from the spectrometer for energetic electrons (SEE) on the (LANL?)
1982-019 satellite. The input to the network was a time delay line over the past 10
days of the daily sum Kp. The model was trained so that the day of the prediction
was the same as the last day of the sum Kp, thus the model was trained to perform
nowcasting. Then the model was tested to make one-day-ahead forecasts. The network
model showed that the predictions were significantly more accurate than a linear filter.
This model was extended to make predictions one day ahead and also include the electron

(MLT). [Freeman_et_al., 1998] developed a neural network to predict the slope and
intercept of the electron power law using Dst and local time as inputs. The intercept
(B) and the slope (M) relates the electron energy (E, in keV) to the differential flux

(F, electrons/cm? s sr keV) according to
log F = B+ Mlog E.

The power law is valid for electron energies 100 keV to 1.5 MeV. The electron data was
taken from the (LANL?) 1984-129 satellite.

3. Prediction of satellite anomalies

To predict satellite anomalies introduces another level of difficulty as compared to
predicting the space environment. The occurrence of an anomaly depends also on the
design and age of the satellite, and different anomaly types have different origin.

4. Artificial neural networks

5. Fuzzy systems
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6. The satellite anomaly prediction module

The satellite anomaly prediction module (SAPM) will not only provide predictions
of satellite anomalies but it will also provide predictions of the electron flux at geosyn-
chronous orbit.

6.1. Prediction of the electron flux from solar wind data

As described in section 8, past attempts to predict the electron flux at geosynchronu-
ous orbit has always used the local electron flux and/or geomagnetic indices (Kp, Dst).
The emphasis has been on high energies (MeV) which are believed to give internal
charging.

As it is the solar wind that drives magnetospheric activity it is natural to develop
models to predict the electron flux from the solar wind. As the electron flux can vary by
several orders of magnitude within 24 hours the time resolution of the predictions should
be better than one day. If a time resolution of one hour is used the diurnal variation
is captured. At the same time we avoid difficulties associated with substorm dynamics
and the evolution of the solar wind from L1 to the Earth.

As the satellite measures the electron flux at a single point and at the same time
moves in the 24-hour orbit around the Earth, it is not possible to distinguish between
spatial and temporal variations. This problem can be solved in two ways: (1) The input
is the solar wind data with 24 different networks predicting the flux in each local time
sector; (2) The input is the solar wind data and the local time, and only one network
predicting the flux in all local time sectors. It is difficult to say which method will work
best. The first method produces simpler networks as each network only has to model
one time sector. However, the training procedure is more complicated as 24 networks
need to be trained. The number of available training examples will also be reduced by
a factor of 24. The second method will produce a more complex network as it also has
to model the local time variation. The training procedure is simpler, only one network,
but the final prediction accuracy might be poorer as a collection of simpler specialized
networks usually perform better than one general network. Both approaches shall be
examined. The first approach is also similar to the hybrid neural network [:_Fl_ajz%@h',:
1994).
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Days from 1 January 1998

Figure 1. The solar wind magnetic field (B,), density, velocity, and the > 0.6 MeV
electron flux over 30 days in 1998.
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6.2. Prediction of satellite anomalies

The prediction of satellite anomalies is a binary yes/no-problem, or a classification
problem. This can be compared to the prediction of the electron flux which is a con-
tinuously valued problem. The prediction of an anomaly is either completely correct or
completely wrong.

Essentially one would like to find a parameter space that can be separated into two
classes that corresponds to anomaly and no-anomaly, respectively.
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