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Chapter 1

Introduction

The satellite anomaly analysis module (SAAM) shall provide five different
functions as described in the URD [Wintoft, 1999]: plotting functions, fil-
ters, statistics, guidelines, and estimate of the best prediction model. In this
document it will be examined how this shall be achieved.

We first analyse part of the data in the SAAPS database by studying
correlations between various parameters. We then continue to describe the
tools in the analysis tool.
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Chapter 2

Various analyses

2.1 Analysis of satellite anomalies

Problems are regularly experienced during the operation of satellites. These
problems, or anomalies, range from change in the memory state in onboard
computers to physical damage on circuitry. Lists of satellite anomalies exist
in both public [Wilkinson, 1994] and non-public databases. The origin of the
anomaly can either be the space environment or a technical problem. Several
studies have shown clear links between the space environment and anomaly
times [Wrenn and Smith, 1996] which makes it feasible to develop a system
for the analysis and prediction of space environment induced anomalies.

When a satellite is exposed to electrons with energies of 1-20 keV electric
charge may build up on the surface of the satellite [Wrenn and Smith, 1996]
and cause electrostatic discharge (ESD). Electrons in this energy range
at GEO are accelerated by geomagnetic substorms and are thus clustered
around the midnight-morning local time sector [Wrenn and Smith, 1996,
Dyer and Rodgers, 1999]. The anomalies from the S001 data set show a
clear clustering around 3 hours local time. The interpretation is thus that
the anomalies are due to surface charging. [Wrenn and Smith, 1996] also
studies the probability for anomalies as a function of both local time and
Kp, where Kp serves as an indicator of keV electron flux. This type of
analysis can be used to identify surface ESD effects.

Internal charging, or deep dielectric charging, can occur at times of en-
hanced fluxes of MeV electrons. Electrons are trapped in dielectric materials
and charge can build up over several hours to a few days until a discharge
may occur. [Wrenn and Smith, 1996] analyzed some 140 anomalies from the
DRAδ satellite. A key feature of the anomalies were that they where pre-
ceded by a charging time of more than 30 hours. Based on this a correlation
was made between the anomalies and the daily average flux of the > 2 MeV
electrons measured at GOES-7. There was a clear threshold in the electron
flux below which no anomalies occurred.
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[López Honrubia and Hilgers, 1997] studied five years of anomaly data
from two consecutive Meteosat satellites, MOP-1 and MOP-2, together with
the daily average electron flux for energies above 2 MeV. It was shown that
there were a clear trend that the anomalies occur during days with high
flux values. However, for individual anomaly events the flux values for the
preceding days showed a large degree of variation with no unique pattern
leading to the anomaly. Two different methods were applied to make a
classification of the anomaly and non-anomaly events: a linear correlation
method and a non-linear neural network.

In the work by [Andersson et al. 1998] and [Wu et al. 1998] neural net-
work models were developed for the prediction of anomalies for specific
anomaly data sets based on both local and non-local space environment
data. These prediction models will be further addressed in Technical Note 3
[Wintoft and Eliasson 2001].

2.1.1 Correlation between different anomaly data sets

It is interesting to examine the correlation between the different anomaly
sets as this will indicate how general a prediction model can be. We perform
this analysis using conditional probabilities and relative mutual information
as defined in Sections 3.3 and 3.4, respectively.

To proceed we select only those anomalies that are believed to be ESD
events. Then we select two variables X and Y which corresponds to anoma-
lies from data set A and B, respectively. X and Y can have the values
x = 0, 1 and y = 0, 1, respectively, where a zero indicates no anomalies
during a day and a one indicates one or more anomalies during the day. Ta-
ble 2.1 summarizes conditional probabilities and relative mutual information
calculated on the daily anomaly data. The number of days for which the data
sets overlaps are also given. The conditional probability P (X = 0|Y = 0)
states that if a ‘no-anomaly’ is observed in set B then what is the prob-
ability that a ‘no-anomaly’ is also observed in set A. Similarly we also
have P (X = 1|Y = 1) for the anomaly events. We can also compute the
probability that the observations are the same in both set A and B given
an observed ‘no-anomaIy’ or ‘anomaly’ event in set B, i.e. P (X = Y |Y ). A
value P (X = Y |Y ) > 0.5 means that we are doing better than guessing. The
last column gives the relative mutual information Ir(X ; Y ). If Ir(X ; Y ) = 0
then there is no relation between the two sets. If Ir(X ; Y ) = 1 then there is
a perfect correlation.

From the P00 column we see that if we observe a ‘no-anomaly’ event in
one data set it is likely that we will also observe a ‘no-anomaly’ event in any
other set. However, from the P11 column we see that the probability is much
lower for observing simultaneous ‘anomaly’ events in any two sets. The P00

and P11 conditional probabilities are summarized in the PXY column which
gives the probability that an observed event in one set will be the same as in
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any other set. The numbers indicate that using the events from one data set
to predict whether there will be the same event in another set will perform
slightly better than just guessing the event. The highest success will be to
use the S003 data to predict the S004-S022 data which gives a probability
of 63% that the prediction will be correct. The final column, Ir(X ; Y ), is
the relative mutual information which also shows the very weak correlation
between any two data sets, except for the S003 and S004-S022 data.

To be more precise, we have in the above actually calculated the prob-
abilities in going from set B to set A (P (A|B)). However, if we reverse the
ordered so that we use A to predict B the probabilities and relative mutual
information will be very similar to the numbers in Table 2.1.

To conclude, we see that if we have a model for the prediction of daily
ESD anomalies for one satellite then that model will not work for the other
satellites. However, it might still be possible that a specific model may
be tuned, by e.g. changing some threshold value or time delays, to better
predict the anomalies for another satellite.

Table 2.1: Cross analysis between the different anomaly sets. A and B are
the data sets; N is the number of overlapping days; P00 = P (X = 0|Y =
0), i.e. given that there is an observed ‘no-anomaly’ in set B what is the
probability that a ‘no-anomaly’ will also be observed in set A; P11 = P (X =
1|Y = 1); PXY = P (X = Y |Y ), i.e. given an observed event (‘anomaly’ or
‘no-anomaly’) in set B what is the probability that the observed event in set
A will be the same as in B; and Ir(X, Y ) is the relative mutual information.

A B N P00 P11 PXY Ir(X, Y )
S001 S002 2623 0.88 0.26 0.57 0.02
S001 S003 1728 0.95 0.17 0.56 0.02
S001 S004-S022 4462 0.91 0.23 0.57 0.02
S002 S003 1601 0.95 0.16 0.56 0.02
S002 S004-S022 2070 0.97 0.11 0.54 0.02
S003 S004-S022 1048 0.97 0.29 0.63 0.10

2.2
∑

Kp and its relation to anomalies

In [Wintoft and Eliasson 2001] we will explore models for the predictions
of daily anomalies from

∑
Kp. However, we start here by analysing the

relation between
∑

Kp and the anomalies.
We calculate the relative mutual information from

∑
Kp to daily anoma-

lies. From past experience we know that the response of anomalies usually
include the variation of

∑
Kp over several days. However, to calculate the

mutual information we must bin
∑

Kp and assign one class to each bin. If
we thus study a time delay line over 10 days we get (number of bins)10 com-
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binations which becomes impossible to handle even if the number of bins is
small. To be able to proceed we instead form averages of

∑
Kp extending

from one to ten days. In this process some information is lost but we can
get an overall picture of the situation.

We start with selecting all data in the five anomaly sets and compare
it with the average

∑
Kp. The result is shown in Figure 2.1. We see that

the relative mutual information (RMI) (I(X ; Y )/H(Y )) is generally below
0.15 and that the different anomaly sets respond to

∑
Kp differently. The

S001 anomalies shows the most direct response to
∑

Kp and S002 and S003
anomalies are best related to about four days averages of

∑
Kp.
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Figure 2.1: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of the average

∑
Kp, where the average goes

from 1 to 10 days. The anomaly sets contain all the anomaly data.

We can refine the analysis by selecting a subset of the anomalies that
are believed to be more related to

∑
Kp. We make the same selection as

in Section 2.1.1 which means that we only select the ESD anomalies. Now
the relation between

∑
Kp and the anomalies becomes stronger as seen in

Figure 2.2. The S001 anomalies are best related to one to two day averages
of

∑
Kp, the S002 anomalies for two to four day averages, S003 for three

to five day averages, and S004-S022 for seven to eight day averages. This
is again a confirmation of the results shown in Table 2.1 that the anomalies
are quite different for the different satellites.

Finally, we can examine the effect of one day
∑

Kp with time delays from
-10 to 10 days. The result is shown in Figure 2.3. We see that the S001
anomalies are most related to

∑
Kp for the same day. The S002 anomalies

peaks at 1 day delay and S003 at 2 days.
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Figure 2.2: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of the average

∑
Kp, where the average goes from

1 to 10 days. A subset of the anomaly data is selected that mainly related
to ESD as explained in the text.
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Figure 2.3: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of

∑
Kp delayed -10 to 10 days. A subset of the

anomaly data is selected that mainly related to ESD as explained in the
text.
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2.3 Daily GOES > 2 MeV electron fluence and
anomalies

We repeat the same analysis used for
∑

Kp to the daily > 2 MeV electron
fluence. The result is shown in Figure 2.4. The time delay between the
fluence and the anomalies is again varied from -10 to 10 days.

The most striking difference between Figure 2.3 and Figure 2.4 is that∑
Kp is leading the anomalies, except for S001 which is simultaneous, while

the fluence is lagging the anomalies, except for S003 which is also simulta-
neous. This, at first appearance, strange result will be further addressed
below.

The S001 anomaly set contain mainly surface ESDs and
∑

Kp works
as an proxy for the keV electron flux. The peak correlation is Ir ≈ 0.17
with no time delay (T = 0 days). The correlation drops to a maximum
Ir ≈ 0.05 at T = 2 to 3 days for the > 2 MeV electron fluence. Thus, both
the correlation drops and the nowcasting becomes a post-casting when we
change

∑
Kp to the > 2 MeV electron fluence. It is known that increases

in the keV electron flux is more directly related to the solar wind structures
causing substorms, while the MeV flux is also related to the solar wind but
not directly to substorms [Baker et al. 1997]. The MeV flux tend to lag the
keV flux by up to several days. Therefore, for surface ESDs we expect this
kind of behaviour.

The > 2 MeV electron fluence and S003 anomaly data has a peak corre-
lation of Ir ≈ 0.25 at T = 0 (Figure 2.4). This indicates that the anomalies
are dominated by internal ESDs. At the same time we see from Figure 2.3
that the correlation between

∑
Kp and anomalies is weaker (Ir ≈ 0.09) but

that
∑

Kp is leading with 2 days.
The other two anomaly sets probably contain both internal and surface

ESDs in more equal numbers and thus have correlation and time delay in
between the S001 and S003 sets.

2.4 The correlation between OMNI and ACE solar

wind data

The solar wind data in the OMNI data set come from a number of near-
Earth solar wind spacecraft. The aim of the OMNI set is to compile the
data from several sources and to make the set as compatible as possible. The
data comes from spacecraft that has mainly been close to the Earth, like
the IMP-8 that was in an 30× 40RE geocentric orbit. The cross-correlation
between the different parameters for different spacecraft was then exam-
ined, and when the systematic errors were larger than the random errors a
cross-normalization was adopted. It was found that only the density and
temperature needed to be cross-normalized, whereas the IMF parameters
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Figure 2.4: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of log daily > 2 MeV electron fluence delayed -10
to 10 days. A subset of the anomaly data is selected that mainly related to
ESD as explained in the text.

and the flow speed always had systematic differences smaller than the ran-
dom errors. As the ISEE-3 spacecraft was located at the Lagrange L1 point
about 240RE upstream from the Earth this data was time shifted to a near-
Earth location. The time shifts are corotation

τrot =
x

V

{
1 + V

RΩ
y
x

1 − VE
RΩ

}
, (2.1)

and convection
τvec =

x2 − x1

V
. (2.2)

It is now interesting to study the relation between the OMNI data and
the ACE data. Figure 2.5 shows the correlation between the OMNI magnetic
field data and the ACE magnetic field data for 1998. The quantity plotted
is the average field magnitude

F = 〈|B|〉, (2.3)

where the angle brackets denote the time average. Generally, the two data
sets show a very good agreement. The few outliers are marked with squares
or diamonds. The diamonds represent times when BACE − BOMNI < 5 nT
and the squares when FACE − FOMNI < −5 nT.

Next we consider the magnitude of the average magnetic field and the
magnetic field components. Figure 2.6 shows the correlation plots for the
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Figure 2.5: Correlation plots between the hourly OMNI magnetic field data
and the ACE magnetic field data over the year 1998. The figure shows the
average field magnitude (F ).
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same data set as in Figure 2.5. Again, there is a very good agreement
between the two data sets with only a few outliers.
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OMNI and ACE magnetic field data for 1998.
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Figure 2.6: Correlation plots between the hourly OMNI magnetic field data
and the ACE magnetic field data over the year 1998. The figures show
the magnitude of the average magnetic field (B), and the magnetic field
components (Bx,By,Bz).

To conclude we can say that there is a very good agreement between
the hourly ACE and OMNI data sets. Models developed on data based on
the OMNI set can thus also be used with the ACE data. Care has only
to be taken in how the hourly averages are formed and how the L1-Earth
time shift is introduced. In Figures 2.5 and 2.6 the data has been averaged
differently. The ACE data are lagging averages 〈B〉(t) =

∫ t
t′=t−1 B(t′)dt′,

while the OMNI data are following averages 〈B〉(t) =
∫ t+1
t′=t B(t′)dt′. The

two different averages will thus introduce a one hour time shift between the
two data sets, and one hour is approximately the time it takes the solar
wind to travel from L1 to Earth.

2.5 Correlation between GOES-7 and GOES-8 > 2
MeV electron flux

Text will
be added
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Chapter 3

The satellite anomaly
analysis module

3.1 Basic operations

3.1.1 The output from the database

A time series of a parameter are obtained from the SAAPS database by
calling the request method from the the database tool. All data, except the
anomaly data, are contiguous. Any data gaps in the time series are indicated
with NaN (Not a Number). The output from the database tool is a vector
of objects, were each object contain the time of the observation and one or
several data values depending on which parameter that has been requested.
There are three arguments that must be specified when requesting data: the
parameter, start time, and end time. E.g., if the requested parameter is the
magnetic field data from the ACE spacecraft (ACE-MFI), for a period from
t0 to t1, then the database tool would return

X =




t0 B(t0) Bx(t0) By(t0) Bz(t0)
t0 + ∆t B(t0 + ∆t) Bx(t0 + ∆t) By(t0 + ∆t) Bz(t0 + ∆t)

...
...

...
...

...
t1 B(t1) Bx(t1) By(t1) Bz(t1)


 ,

(3.1)
where ∆t is the sampling interval.

3.1.2 Handling data gaps

Generally, all the parameters in the SAAPS database contain occasional
data gaps. To be able to make any further mathematical analysis these
data gaps have to be treated.

The safest approach is to simply to create a data set in which the times
with data gaps have been removed. However, this may lead to small data

15
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sets.
The data gaps can also be replaced with linearly interpolated data values.

This is achieved by searching one column at at time for NaN’s and then
interpolate the value. Data gaps can be contiguous and thus extend over
several time steps. The number of time steps over which it is acceptable
to interpolate must be given. This number can be estimated from e.g. a
cross-correlation analysis. The algorithm for removing data gaps is given
below.

1. Set i1 to the first instance of NaN in X(i, j) for column j.

2. If X(i1 + 1, j) = NaN set i2 = i1 + 1.

3. Continue with step 2 until X(in + 1, j) �= NaN.

4. If n ≤ m, where m is the maximum number of contiguous time steps
to be interpolated, then

X̂(ik, j) =
k

n + 1
(X(i1 − 1, j) + X(in + 1, j), 1 ≤ k ≤ n.

5. Set i1 to the next instance of NaN after in.

6. Continue with step 2 for rows i and all columns j.

3.1.3 Averaging time series data

To be able to perform studies between parameters with different sample in-
tervals an averaging must be performed to reduce the time resolution for the
parameter with the highest sampling rate to the resolution of the parame-
ter with the lowest sampling rate. Also, models my not require the highest
sampling rate.

Assume that the original time series x0, x1, . . ., xm are equidistant sam-
pled at times t(x)

0 , t(x)
1 , . . ., t(x)

m where the sample interval is ∆t(x). We thus
have

xi = x(t(x)
i ) = x(t(x)

i−1 + ∆t(x)). (3.2)

We also assume that the resolution ∆T (x) equals the sample interval, i.e.
∆T (x) = ∆t(x). We now want to average and resample the time series xi to
a new time series yj so that

yj = y(t(y)
j ) = y(t(y)

j−1 + ∆t(y)), (3.3)

where t
(y)
j and ∆t(y) are the new sample times and sample interval, respec-

tively. The time resolution of the new series is ∆T (y) and is not necessary
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equal to the sample interval ∆t(y). The relation between the two series
becomes

yj =
1
p

sj+p−1∑
i=sj

xi, (3.4)

where the number of points to average is

p =
∆T (y)

∆T (x)
=

∆T (y)

∆t(x)
(3.5)

and the point sample interval is

s =
∆t(y)

∆t(x)
. (3.6)

The new sample times becomes

t
(y)
j = t

(x)
sj +

∆T (y) − ∆t(x)

2
+ t

(y)
off , (3.7)

where we also introduce a time offset t
(y)
off . The time offset determines to

which time an average belongs. E.g. if t
(y)
off = 0 then we have a central

average. If t
(y)
off = −(∆T (y) − ∆t(x))/2 then the time is in the beginning

of the average interval (forward average), while if t(y)
off = (∆T (y) − ∆t(x))/2

it is at the end of the average interval (lagging average). From a physical
point of view the central average is to prefer, while for real time operation
the lagging average must be used. The hourly average data from the Space
Environment Center (SEC) and the OMNI data set use forward average
data.

The latest time in the original time series is t
(x)
m . When performing the

average in Equation 3.4 the last position to use is sj + p − 1. This means
that sj + p− 1 has a maximum value of m, thus sj ≤ m− p + 1.

∆T (y) and ∆t(y) should also be multiples of ∆t(x) to ensure that p and
s are integer numbers.

Any data gaps that exist in the time series that are averaged will also be
present in the resulting time series. This means that if a times series with
five minute resolution is averaged to one hour resolution, and if there is a
NaN for one point, then that one hour interval will also be a NaN. If this
is to be avoided the time series should first be interpolated to remove any
NaN’s.

3.1.4 Error measures

To asses the performance of a model several different error measures exist.
The mean-square-error (MSE) is defined as

RMSE =
1
n

n∑
i=1

(xi − yi)2. (3.8)
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The root-mean-square error (RMSE) is defined as

RMSE =
√

MSE. (3.9)

The variance is closely related to the MSE and is defined as

σ2 =
1

n− 1

n∑
i=1

(xi − x̄)2. (3.10)

Taking the square root of the variance we get the standard deviation σ.
The prediction efficiency (PE) [Detman, 1998] is the MSE normalized with
respect to the variance

PE = 1 − MSE
σ2

. (3.11)

If the MSE equals the variance the PE becomes 0, and if MSE is zero the PE
becomes equal to 1. To compare different prediction techniques skill scores
[Detman, 1998] can be used. The skill score (SS) is defined as

SS = 1 − MSE
MSEref

, (3.12)

where the MSE of the model is related to the MSE of a reference model
(MSEref). If SS > 0 then the new model is better than the reference model,
while if SS < 0 the new model is less good than the reference model.

3.2 Linear correlation

The linear correlation coefficient is calculated as

r =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

√∑
i(yi − ȳ)2

, (3.13)

where x̄ is the mean of the xi’s and ȳ is the mean of the yi’s [Press et al., 1992].
The correlation coefficient r will be equal to −1 if the two variable are

perfectly anti-correlated, and equal to 1 if they are perfectly correlated. If
r = 0 then there exist no linear correlation. However, even if r is small or
zero there might exist a non-linear relation.

3.3 Probability and conditional probability

Assume we have the two discrete random variables X and Y that can assume
the values x = 0, 1, . . . , m−1 and y = 0, 1, 2, . . . , n−1, respectively. Further,
assume we have k observations of the two variables where the number of
outcomes for each value in x and y are ax and by, respectively. We see that
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∑
x ax =

∑
y by = k. We can now calculate the probability that X will take

on the value x as
P (X = x) = p(x) =

ax

k
. (3.14)

Similarly we get for Y

P (Y = y) = p(y) =
by

k
. (3.15)

The joint probability then becomes

P (X = x, Y = x) = P (X = x)P (Y = y) =
axby

k2
. (3.16)

The conditional probability P (X = x|Y = y) gives us the probability
the x will be observed given that y has been observed. The conditional
probabilities are calculated as

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
(3.17)

and
P (Y = y|X = x) =

P (X = x, Y = y)
P (X = x)

. (3.18)

It is worth noting that
∑

x P (X = x|Y = y) = 1.

3.4 Entropy and mutual information

The linear correlation coefficient estimates how well linearly correlated two
variables are. Thus, a small value of the correlation coefficient only indicates
that the two variables are weakly linearly related, but there might be a
non-linear correlation. The mutual information is another way to examine
the correlation between two variables, and it does not assume anything
about the functional dependency between the two variables [Swingler, 1996,
Deco and Obradovic 1996].

As in the previous section, assume that we have a discrete random vari-
able X that can take m different discrete values x with probabilities p(x).
The entropy of X then becomes

H(X) = −
∑
x

p(x) lnp(x). (3.19)

As 0 ≤ p(x) ≤ 1 the entropy will always be positive. The entropy will be
maximum for a uniformly distributed variable; p(x) = 1/m gives H(X) =
lnm.

Similar to the joint and conditional probabilities we also have the joint
entropy

H(X1, X2) = −
∑
x1

∑
x2

p(x1, x2) lnp(x1, x2), (3.20)
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and the conditional entropy

H(X1|X2) = −
∑
x1

∑
x2

p(x1, x2) lnp(x2|x1). (3.21)

Finally, the mutual information is defined as

I(X1;X2) =
∑
x1

∑
x2

p(x1, x2) ln
p(x1, x2)
p(x1)p(x2)

. (3.22)

Note that the “;” in I(X ; Y ) means that X and Y are not interchangeable,
thus I(X ; Y ) �= I(Y ;X). The mutual information lies in the interval 0 ≤
I(X ; Y ) ≤ H(Y ). If I(X ; Y ) = 0 then X and Y are uncorrelated, whereas
if I(X ; Y ) = H(Y ) they are perfectly correlated. We can normalize the
mutual information with respect to the entropy to get the relative mutual
information

Ir(X ; Y ) =
I(X ; Y )
H(Y )

(3.23)

which now is a number between 0 and 1.
As an example we can study the mapping y = sinx on the interval x ∈

[0, 2π]. We bin the continuous values into discrete values with a bin size of 0.1
and calculate the probabilities p(x), p(y), and p(x, y). The result is shown in
Figure 3.1. The computed entropies are H(X) = 3.45 and H(Y ) = 2.35 and
the mutual information is I(X ; Y ) = 1.88. The relative mutual information
then becomes Ir(X ; Y ) = 0.801 and thus predicting y from x should be
successful. On the other hand we have Ir(Y ;X) = I(X ; Y )/H(X) = 0.546
which means that making the inverse prediction y �→ x is more difficult. By
examining the sine curve or the probabilities we see that going from x to y

is single valued while going from y to x is double valued.

3.5 Superposed epoch analysis

An efficient way to examine if there are trends in a parameter associated
with a list of events is to use superposed epoch analysis. For this one needs
a list of events and the size and location of the analysis window. Assume
we have a list of anomalies at times

ti , 1 ≤ i ≤ m. (3.24)

Next, we set the analysis window to start at

t
(s)
i = ti + p∆t, (3.25)

and end at
t
(e)
i = ti + q∆t. (3.26)
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Figure 3.1: A sine curve y = sinx (top left) and the probabilities p(x)
(top right) and p(y) (bottom left) using a bin size of 0.1, and the joint
probabilities p(x, y) (bottom right).

Generally p < 0 and q ≥ 0 so that the window start before the event and
end at or after the event. The sample interval for the parameter is ∆t. A
matrix is created from the parameter x(t) that should be superposed as

Xij = x(t(s)i + j∆t) , 0 ≤ j ≤ n, (3.27)

where n = q − p. In the above it is assumed that the event times ti are
positioned at the sample times of the parameter x(t). If this is not the case
the event times are easily moved to the sample times by rounding the event
time to the closest sample time. Then, the final step is to calculate the
superposed values

sj =
m∑

i=1

Xij, (3.28)

or alternatively the superposed average

ŝj =
1
m
sj . (3.29)

If there are any data gaps in the original time series x(t) the matrix
Xij will contain NaN’s at the corresponding positions. The value sj at
position j will then have a NaN if one or more rows of Xij contain a NaN at
position j. Obviously, if there are a large number of events (m large) then
the probability that sj will only contain NaN’s increases. Therefore, it is
desirable to replace data gaps with interpolated values.
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3.6 Determining the best prediction model

From a user submitted list of anomalies we can determine the anomaly pre-
diction model that best matches the submitted list. The prediction models
are covered in [Wintoft and Eliasson 2001].

Assume that we have a collection of models

F i(t) , i = 1, 2, . . . , q (3.30)

that return the probability for an anomaly at time t. If for a specific time
t = tna we have F i(tna) < 0.5 then the prediction is ‘no anomaly’. At another
time t = ta we have F i(ta > 0.5 which means that we have an ‘anomaly’.
Based on the user submitted lists of anomaly events and no anomaly events
each model can be run for all the events.

Let the user event list contain the times t = [tna
1 , tna

2 , . . . , tna
m , ta1, t

a
2, . . . , t

a
n].

The desired output for these events is y = [0, 0, . . . , 0, 1, 1, . . . , 1] where the
first sequence is made up of m zeros (no-anomaly) and the second sequence
of n ones (anomaly).

The output from model i is

xi = F i(t). (3.31)

The conditional probability can be used to calculate the probability that the
observed event is predicted by model i

P i
XY = P (X = xi|Y = y). (3.32)

The probability the a no-anomaly event will be predicted is

P i
XY (na) = P (X = xi(na)|Y = y(na)) (3.33)

and the probability that an anomaly will be predicted

P i
XY (a) = P (X = xi(a)|Y = y(a)). (3.34)

These two probabilities can be averaged

Q =
P i

XY (na) + P i
XY (a)

2
. (3.35)

The best prediction model is the model that maximizes Q. Using Q we
will get the model that gives the highest probabilities of predicting both
anomalies and no-anomalies without getting biased by an unbalanced data
set. A model is considered useful if Q > 0.5.

To demonstrate the average conditional probability Q we can study a
few extreme cases.

Lets assume that we have an event set that contain 10% anomalies.
A simple model based only on this percentage of anomalies would always
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predict no-anomalies. Then we would get P i
XY (na) = 1, P i

XY (a) = 0, and
Q = 0.5. This model will always be correct for the no-anomalies and always
be wrong on the anomalies, i.e. not a very useful model.

As another example assume that the model correctly predict 80% of the
no-anomalies but only 50% of the anomalies. Then we get P i

XY (na) = 0.8,
P i

XY (a) = 0.5, and Q = 0.65.
One value of Q can correspond to range of probabilities for the no-

anomaly and anomaly predictions. I.e. two different models that give Q =
0.8 may have in one case PXY (na) = 0.8 and PXY (a) = 0.8, but in another
case PXY (na) = 0.9 and PXY (a) = 0.7. The first model is equally good
in predicting no-anomalies as anomalies, while the second model is more
biased to the no-anomaly predictions. The optimization procedure will not
distinguish between these two cases.
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