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Chapter 1

Introduction

The satellite anomaly analysis module (SAAM) shall provide five different
functions as described in the URD [Wintoft, 1999]: plotting functions, fil-
ters, statistics, guidelines, and estimate of the best prediction model. In this
document it will be examined how this shall be achieved.

3



Chapter 2

Satellite anomalies

Problems are regularly experienced during the operation of satellites. These
problems, or anomalies, range from change in the memory state in onboard
computers to physical damage on circuitry. Lists of satellite anomalies exist
in both public [Wilkinson, 1994] and non-public databases. The origin of the
anomaly can either be the space environment or a technical problem. Several
studies have shown clear links between the space environment and anomaly
times [Wrenn and Smith, 1996] which makes it feasible to develop a system
for the analysis and prediction of space environment induced anomalies.

2.1 Analysis of satellite anomalies

When a satellite is exposed to electrons with energies of 1-20 keV electric
charge may build up on the surface of the satellite [Wrenn and Smith, 1996]
and cause electrostatic discharge (ESD). Electrons in this energy range
at GEO are accelerated by geomagnetic substorms and are thus clustered
around the midnight-morning local time sector. The anomalies from the
Marecs-A satellite show a clear clustering around 3 hours local time. The in-
terpretation is thus that the anomalies are due to surface charging [Wrenn and Smith, 1996,
Dyer and Rodgers, 1999]. [Wrenn and Smith, 1996] also studies the proba-
bility for Marecs-A anomalies as a function of both local time and Kp, where
Kp serves as an indicator of keV electron flux. This type of analysis can be
used to identify surface ESD effects.

Internal charging, or deep dielectric charging, can occur at times of en-
hanced fluxes of MeV electrons. Electrons are trapped in dielectric materials
and charge can build up over several hours to a few days until a discharge
may occur. [Wrenn and Smith, 1996] analyzed some 140 anomalies from the
DRAδ satellite. A key feature of the anomalies were that they where pre-
ceded by a charging time of more than 30 hours. Based on this a correlation
was made between the anomalies and the daily average flux of the > 2 MeV
electrons measured at GOES-7. There was a clear threshold in the electron
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flux below which no anomalies occurred.
[López Honrubia and Hilgers, 1997] studied five years of anomaly data

from two consecutive Meteosat satellites, MOP-1 and MOP-2, together with
the daily average electron flux for energies above 2 MeV. It was shown that
there were a clear trend that the anomalies occur during days with high
flux values. However, for individual anomaly events the flux values for the
preceding days showed a large degree of variation with no unique pattern
leading to the anomaly. Two different methods were applied to make a
classification of the anomaly and non-anomaly events: a linear correlation
method and a non-linear neural network.



Chapter 3

The satellite environment

3.1 LEO

3.2 GTO

3.3 GEO

3.4 The relation between geomagnetic activity and

electron flux

3.5 The relation between the solar wind and elec-

tron flux
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Chapter 4

The satellite anomaly
analysis module

4.1 Basic operations

4.1.1 The output from the database

A time series of a parameter are obtained from the SAAPS database by
calling the request method from the the database tool. All data, except the
anomaly data, are contiguous. Any data gaps in the time series are indicated
with NaN (Not a Number). The output from the database tool is a vector
of objects, were each object contain the time of the observation and one or
several data values depending on which parameter that has been requested.
There are three arguments that must be specified when requesting data: the
parameter, start time, and end time. E.g., if the requested parameter is the
magnetic field data from the ACE spacecraft (ACE-MFI), for a period from
t0 to t1, then the database tool would return

X =




t0 B(t0) Bx(t0) By(t0) Bz(t0)
t0 +∆t B(t0 +∆t) Bx(t0 +∆t) By(t0 +∆t) Bz(t0 +∆t)

...
...

...
...

...
t1 B(t1) Bx(t1) By(t1) Bz(t1)




,

(4.1)
where ∆t is the sampling interval.

4.1.2 Handling data gaps

Generally, all the parameters in the SAAPS database contain occasional
data gaps. To be able to make any further mathematical analysis these
data gaps have to be treated.

The safest approach is to simply to create a data set in which the times
with data gaps have been removed. However, this may lead to small data
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sets.
The data gaps can also be replaced with linearly interpolated data values.

This is achieved by searching one column at at time for NaN’s and then
interpolate the value. Data gaps can be contiguous and thus extend over
several time steps. The number of time steps over which it is acceptable
to interpolate must be given. This number can be estimated from e.g. a
cross-correlation analysis. The algorithm for removing data gaps is given
below.

1. Set i1 to the first instance of NaN in X(i, j) for column j.

2. If X(i1 + 1, j) = NaN set i2 = i1 + 1.

3. Continue with step 2 until X(in + 1, j) �= NaN.

4. If n ≤ m, where m is the maximum number of contiguous time steps
to be interpolated, then

X̂(ik, j) =
k

n + 1
(X(i1 − 1, j) + X(in + 1, j), 1 ≤ k ≤ n.

5. Set i1 to the next instance of NaN after in.

6. Continue with step 2 for rows i and all columns j.

4.1.3 Averaging time series data

To be able to perform studies between parameters with different sample in-
tervals an averaging must be performed to reduce the time resolution for the
parameter with the highest sampling rate to the resolution of the parame-
ter with the lowest sampling rate. Also, models my not require the highest
sampling rate.

Assume that the original time series x0, x1, . . ., xm are equidistant sam-
pled at times t

(x)
0 , t

(x)
1 , . . ., t

(x)
m where the sample interval is ∆t(x). We thus

have
xi = x(t(x)

i ) = x(t(x)
i−1 +∆t(x)). (4.2)

We also assume that the resolution ∆T (x) equals the sample interval, i.e.
∆T (x) = ∆t(x). We now want to average and resample the time series xi to
a new time series yj so that

yj = y(t(y)
j ) = y(t(y)

j−1 +∆t(y)), (4.3)

where t
(y)
j and ∆t(y) are the new sample times and sample interval, respec-

tively. The time resolution of the new series is ∆T (y) and is not necessary
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equal to the sample interval ∆t(y). The relation between the two series
becomes

yj =
1
p

sj+p−1∑
i=sj

xi, (4.4)

where the number of points to average is

p =
∆T (y)

∆T (x)
=

∆T (y)

∆t(x)
(4.5)

and the point sample interval is

s =
∆t(y)

∆t(x)
. (4.6)

The new sample times becomes

t
(y)
j = t

(x)
sj +

∆T (y) −∆t(x)

2
+ t

(y)
off , (4.7)

where we also introduce a time offset t
(y)
off . The time offset determines to

which time an average belongs. E.g. if t
(y)
off = 0 then we have a central

average. If t
(y)
off = −(∆T (y) − ∆t(x))/2 then the time is in the beginning

of the average interval (forward average), while if t
(y)
off = (∆T (y) − ∆t(x))/2

it is at the end of the average interval (lagging average). From a physical
point of view the central average is to prefer, while for real time operation
the lagging average must be used. The hourly average data from the Space
Environment Center (SEC) and the OMNI data set use forward average
data.

The latest time in the original time series is t
(x)
m . When performing the

average in Equation 4.4 the last position to use is sj + p − 1. This means
that sj + p − 1 has a maximum value of m, thus sj ≤ m − p + 1.

∆T (y) and ∆t(y) should also be multiples of ∆t(x) to ensure that p and
s are integer numbers.

Any data gaps that exist in the time series that are averaged will also be
present in the resulting time series. This means that if a times series with
five minute resolution is averaged to one hour resolution, and if there is a
NaN for one point, then that one hour interval will also be a NaN. If this
is to be avoided the time series should first be interpolated to remove any
NaN’s.

4.1.4 Error measures

To asses the performance of a model several different error measures exist.
The mean-square-error (MSE) is defined as

RMSE =
1
n

n∑
i=1

(xi − yi)2. (4.8)
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The root-mean-square error (RMSE) is defined as

RMSE =
√
MSE. (4.9)

The variance is closely related to the MSE and is defined as

σ2 =
1

n − 1

n∑
i=1

(xi − x̄)2. (4.10)

Taking the square root of the variance we get the standard deviation σ.
The prediction efficiency (PE) [Detman, 1998] is the MSE normalized with
respect to the variance

PE = 1− MSE
σ2

. (4.11)

If the MSE equals the variance the PE becomes 0, and if MSE is zero the PE
becomes equal to 1. To compare different prediction techniques skill scores
[Detman, 1998] can be used. The skill skore (SS) is defined as

SS = 1− MSE
MSEref

, (4.12)

where the MSE of the model is related to the MSE of a reference model
(MSEref). If SS > 0 then the new model is better than the reference model,
while if SS < 0 the new model is less good than the reference model.

4.2 Coordinate transformations

4.3 Entropy and mutual information

[Swingler, 1996] and [Deco and Obradovic 1996]
Assume that we have a discrete random variable X that can take m

different discrete values x with probabilities p(x). The entropy of X then
becomes

H(X) = −
∑
x

p(x) lnp(x). (4.13)

As 0 ≤ p(x) ≤ 1 the entropy will always be positive. The entropy will be
maximum for a uniformly distributed variable; p(x) = 1/m gives H(X) =
lnm.

For two variables X1 and X2 we have the joint probabilities p(x1, x2)
and conditional probabilities p(x1|x2) with the relation

p(x1|x2) =
p(x1, x2)

p(x2)
. (4.14)

Note that p(x1, x2) = p(x2, x1) but p(x1|x2) �= p(x2|x1). Similarly we have
the joint entropy

H(X1, X2) = −
∑
x1

∑
x2

p(x1, x2) lnp(x1, x2), (4.15)
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and the conditional entropy

H(X1|X2) = −
∑
x1

∑
x2

p(x1, x2) lnp(x2|x1). (4.16)

Mutual information

I(X1;X2) =
∑
x1

∑
x2

p(x1, x2) ln
p(x1, x2)

p(x1)p(x2)
. (4.17)

If the fraction I(X1;X2)/H(X2) is zero then it is not possible to predict
X2 from X1. If the fraction is one then there is a good chance that X2 is
predictable from X1.

Generalizable to higher dimensions X1, X2, . . ., Xn.
As an example we can study the mapping y = sinx on the interval

x ∈ [0, 2π]. We bin the continuous values into discrete values with a bin
size of 0.1 and calculate the probabilites p(x), p(y), and p(x, y). The result
is shown in Figure 4.1. The computed entropies are H(X) = 3.45 and
H(Y ) = 2.35 and the mutual information is I(X ; Y ) = 1.88. The fraction
then becomes I(X ; Y )/H(Y ) = 0.801 and thus predicting y from x should be
successful. On the other hand we have I(X ; Y )/H(X) = 0.546 which means
that making the inverse prediction y �→ x is more difficult. By exmining the
sine curve or the probabilities we see that going from x to y is single valued
while going from y to x is double valued.

4.4 Linear correlation

The linear correlation coefficient is calculated as

r =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

√∑
i(yi − ȳ)2

, (4.18)

where x̄ is the mean of the xi’s and ȳ is the mean of the yi’s [Press et al., 1992].

4.5 Superposed epoch analysis

An efficient way to examine if there are trends in a parameter associated
with a list of events is to use superposed epoch analysis. For this one needs
a list of events and the size and location of the analysis window. Assume
we have a list of anomalies at times

ti , 1 ≤ i ≤ m. (4.19)

Next, we set the analysis window to start at

t
(s)
i = ti + p∆t, (4.20)
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Figure 4.1: A sine curve y = sinx (top left) and the probablities p(x) (top
right) and p(y) (bottom left) using a bin size of 0.1, and the joint probablities
p(x, y) (bottom right).
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and end at
t
(e)
i = ti + q∆t. (4.21)

Generally p < 0 and q ≥ 0 so that the window start before the event and
end at or after the event. The sample interval for the parameter is ∆t. A
matrix is created from the parameter x(t) that should be superposed as

Xij = x(t(s)i + j∆t) , 0 ≤ j ≤ n, (4.22)

where n = q − p. In the above it is assumed that the event times ti are
positioned at the sample times of the parameter x(t). If this is not the case
the event times are easily moved to the sample times by rounding the event
time to the closest sample time. Then, the final step is to calculate the
superposed values

sj =
m∑

i=1

Xij, (4.23)

or alternatively the superposed average

ŝj =
1
m

sj . (4.24)

If there are any data gaps in the original time series x(t) the matrix
Xij will contain NaN’s at the corresponding positions. The value sj at
position j will then have a NaN if one or more rows of Xij contain a NaN at
position j. Obviously, if there are a large number of events (m large) then
the probability that sj will only contain NaN’s increases. Therefore, it is
desirable to replace data gaps with interpolated values.

4.6 Pattern search

4.7 Determining the best prediction model



Chapter 5

Various analyses

5.1 Entropies between different anomaly data sets

We can use the entropy measures introduced in Section 4.3 to examine the
relation between the different anomaly data sets. To proceed with this we
should as carefully as possible try to select the same type of anomalies for
the sets that shall be compared. For the Marecs-A satellite we select all
anomalies which are related to the A108 power voltage indicator, which are
believed to be mainly related with surface ESD [Wrenn and Smith, 1996].
For the Meteosat-3 satellite we select all anomalies that are related to the
radiometer and the Tele-X stellite the CMU reset related anomalies. Finally,
we select the ESD anomalies from the NSSDC data set which include both
surface and internal charging. The TDRS-1 set contains only SEU events.

Then we select two variables X and Y which corresponds to anomalies
from two different satellites, respectively. X and Y can have the values
x = 0, 1 and y = 0, 1, respectively, where a zero indicates no anomalies
during a day and a one indicates one or more anomalies during the day.
Table 5.1 summarises the joint probablities, the total number of overlapping
days, and the mutual information between any two sets. Each table cell
contain the following:

P (x = 0, y = 0) P (x = 0, y = 1)
P (x = 1, y = 0) P (x = 1, y = 1)
number of days I(X ; Y )/H(Y )

If the fraction I(X ; Y )/H(Y ) is zero the two variables are unrelated and if
the fraction is one it is possible to predict Y from X .

As an example we can study the relation between the Marecs-A anoma-
lies and the Meteosat-3 anomalies. In 73% of the days both satellites have
no anomalies and in 4% of the days both satellites have anomalies. In 13% of
the days Marecs-A have anomalies and at the same time Meteosat-3 have no
anomalies. In 10% of the days Marecs-A show no anomalies while Meteosat-
3 do. There is totally 2623 overlapping days between the two sets. Finally,
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the relative mutal information is only 0.02. This means that there is a very
weak relation between the Marecs-A A108 anomalies and the Meteosat-3
radiometer anomalies.

The strongest relation exist between the Tele-X and the NSSDC anomaly
sets with I(X ; Y )/H(Y ) = 0.11. However, this is still very weak. It should
also be noted that P (x = 1, y = 1) = 0.01 which means that there are only
about 10 days out of the 1048 days when both satellites show simultaneous
anomalies.

Table 5.1: Cross analysis between four different satellite anomaly sets.
In each table cell is shown the joint probability P (X, Y ), the total num-
ber of days, and the mutual information divided by the entropy of Y
(I(X ; Y )/H(Y )). The satellite sets of the first columns corresponds to the
variable X and the sets at the first row to the variable Y .

Marecs-A Meteosat-3 Tele-X NSSDC
Marecs-A 0.84 0.00 0.73 0.10 0.82 0.05 0.76 0.07

0.00 0.16 0.13 0.04 0.11 0.02 0.13 0.04
5143 1.00 2623 0.02 1729 0.03 4462 0.03

Meteosat-3 0.73 0.13 0.86 0.00 0.78 0.04 0.84 0.03
0.10 0.04 0.00 0.14 0.15 0.03 0.12 0.01
2623 0.02 2623 1.00 1601 0.04 2070 0.04

Tele-X 0.82 0.11 0.78 0.15 0.93 0.00 0.93 0.03
0.05 0.02 0.04 0.03 0.00 0.07 0.03 0.01
1729 0.02 1601 0.02 1973 1.00 1048 0.11

NSSDC 0.76 0.13 0.84 0.12 0.93 0.03 0.91 0.00
0.07 0.04 0.03 0.01 0.03 0.01 0.00 0.09
4462 0.02 2070 0.02 1048 0.10 7420 1.00

5.2
∑

Kp and its relation to anomalies

5.2.1 Mutual information

We can examine the information content in
∑

Kp and relate it to the satellite
anomalies. From past experience we know that the response of anomalies
usually include the variation of

∑
Kp over several days. However, to calcu-

late the mutual information we must bin
∑

Kp and assign one class to each
bin. If we thus study a time delay line over 10 days we get (number of bins)10

combinations which becomes impossible to handle even if the number of bins
is small. To be able to proceed we instead form averages of

∑
Kp extending

from one to ten days. In this process some information is lost but we can
get an overall picture of the situation.

We start with selecting all data in the five anomaly sets and compare
it with the average

∑
Kp. The result is shown in Figure 5.1. We see that
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Figure 5.1: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of the average

∑
Kp, where the average goes

from 1 to 10 days. The anomaly sets contain all the anomaly data.

the relative mutual information (RMI) (I(X ; Y )/H(Y )) is generally below
0.15 and that the different anomaly sets respond to

∑
Kp differently. The

obvious fact is that the TDRS-1 have RMI ≈ 0 which is to expect as it
contain only SEU anomalies. Marecs-A anomalies shows the most direct
respons to

∑
Kp and Meteosat-3 and Tele-X anomalies are best related to

about four days averages of
∑

Kp.
We can refine the analysis by selecting a subset of the anomalies that

are believed to be more related to
∑

Kp. We make the same selection as
in Section 5.1 which means that we have the surface ESD anomalies from
Marecs-A, radiometer anomalies from Meteosat-3, CMU resets from Tele-X,
and ESD anomalies from NSSDC. Now the relation between

∑
Kp and the

anomalies becomes stronger as seen in Figure 5.2. The Marecs-A anomalies
are best related to one to two day averages of

∑
Kp, the Meteosat-3 anoma-

lies for two to four day averages, Tele-X for three to five day averages, and
NSSDC for seven to eight day averages. This is again a confirmation of
the results shown in Table 5.1 that the anomalies are quite different for the
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Figure 5.2: The relative mutual information I(X ; Y )/H(Y ) for the different
anomaly sets as a function of the average

∑
Kp, where the average goes from

1 to 10 days. A subset of the anomaly data is selected that mainly related
to ESD as explained in the text.

different satellites.
Finally, we can examine the effect of one day

∑
Kp delayed 0 to 9 days.

The result is shown in Figure 5.3. We see that the Marecs-A anomalies are
most related to

∑
Kp for the same day. The Meteosat-3 anomalies peaks at

1 day delay and Tele-X at 2 days.

5.3 Average MeV GOES electron flux and anoma-
lies

5.4 Solar wind and anomalies
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∑
Kp delayed 0 to 9 days. A subset of the

anomaly data is selected that mainly related to ESD as explained in the
text.
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