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1. Introduction

The satellite anomaly analysis module (SAAM) shall provide five different functions
as described in the URD [Wintoft, 1999]: plotting functions, filters, statistics, guidelines,
and estimate of the best prediction model. In this document it will be examined how
this shall be achieved.

2. Satellite anomalies

Problems are regularly experienced during the operation of satellites. These prob-
lems, or anomalies, range from change in the memory state in onboard computers to
physical damage on circuitry. Lists of satellite anomalies exist in both public [Wilkin-
son, 1994] and non-public databases. The origin of the anomaly can either be the space
environment or a technical problem. Several studies have shown clear links between the
space environment and anomaly times [Wrenn and Smith, 1996] which makes it feasi-
ble to develop a system for the analysis and prediction of space environment induced
anomalies.

2.1. Analysis of satellite anomalies

When a satellite is exposed to electrons with energies of 1-20 keV electric charge may
build up on the surface of the satellite [Wrenn and Smith, 1996] and cause electrostatic
discharge (ESD). Electrons in this energy range at GEO are accelerated by geomagnetic
substorms and are thus clustered around the midnight-morning local time sector. The
anomalies from the Marecs-A satellite show a clear clustering around 3 hours local time.
The interpretation is thus that the anomalies are due to surface charging [Wrenn and
Smith, 1996; Dyer and Rodgers, 1999]. [Wrenn and Smith, 1996] also studies the
probability for Marecs-A anomalies as a function of both local time and Kp, where Kp
serves as an indicator of keV electron flux. This type of analysis can be used to identify
surface ESD effects.
Internal charging, or deep dielectric charging, can occur at times of enhanced fluxes

of MeV electrons. Electrons are trapped in dielectric materials and charge can build up
over several hours to a few days until a discharge may occur. [Wrenn and Smith, 1996]
analyzed some 140 anomalies from the DRAδ satellite. A key feature of the anomalies
were that they where preceded by a charging time of more than 30 hours. Based on
this a correlation was made between the anomalies and the daily average flux of the > 2
MeV electrons measured at GOES-7. There was a clear threshold in the electron flux
below which no anomalies occurred.
[López Honrubia and Hilgers, 1997] studied five years of anomaly data from two

consecutive Meteosat satellites, MOP-1 and MOP-2, together with the daily average
electron flux for energies above 2 MeV. It was shown that there were a clear trend that
the anomalies occur during days with high flux values. However, for individual anomaly
events the flux values for the preceding days showed a large degree of variation with no
unique pattern leading to the anomaly. Two different methods were applied to make a
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classification of the anomaly and non-anomaly events: a linear correlation method and
a non-linear neural network.

3. The satellite environment

3.1. LEO

3.2. GTO

3.3. GEO

3.4. The relation between geomagnetic activity and electron flux

3.5. The relation between the solar wind and electron flux

4. The satellite anomaly analysis module

4.1. Basic operations

4.1.1. The output from the database

A time series of a parameter are obtained from the SAAPS database by calling the
request method from the the database tool. All data, except the anomaly data, are con-
tiguous. Any data gaps in the time series are indicated with NaN (Not a Number). The
output from the database tool is a vector of objects, were each object contain the time
of the observation and one or several data values depending on which parameter that
has been requested. There are three arguments that must be specified when requesting
data: the parameter, start time, and end time. E.g., if the requested parameter is the
magnetic field data from the ACE spacecraft (ACE-MFI), for a period from t0 to t1,
then the database tool would return

X =




t0 B(t0) Bx(t0) By(t0) Bz(t0)
t0 +∆t B(t0 +∆t) Bx(t0 +∆t) By(t0 +∆t) Bz(t0 +∆t)
...

...
...

...
...

t1 B(t1) Bx(t1) By(t1) Bz(t1)




, (1)

where ∆t is the sampling interval.

4.1.2. Handling data gaps

Generally, all the parameters in the SAAPS database contain occasional data gaps.
To be able to make any further mathematical analysis these data gaps have to be treated.
The safest approach is to simply to create a data set in which the times with data

gaps have been removed. However, this may lead to small data sets.
The data gaps can also be replaced with linearly interpolated data values. This is

achieved by searching one column at at time for NaN’s and then interpolate the value.
Data gaps can be contiguous and thus extend over several time steps. The number of
time steps over which it is acceptable to interpolate must be given. This number can be
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estimated from e.g. a cross-correlation analysis. The algorithm for removing data gaps
is given below.

1. Set i1 to the first instance of NaN in X(i, j) for column j.

2. If X(i1+ 1, j) = NaN set i2 = i1 + 1.

3. Continue with step 2 until X(in+ 1, j) �= NaN.

4. If n ≤ m, where m is the maximum number of contiguous time steps to be inter-
polated, then

X̂(ik, j) =
k

n + 1
(X(i1 − 1, j) +X(in+ 1, j), 1 ≤ k ≤ n.

5. Set i1 to the next instance of NaN after in.

6. Continue with step 2 for rows i and all columns j.

4.1.3. Averaging time series data

To be able to perform studies between parameters with different sample intervals an
averaging must be performed to reduce the time resolution for the parameter with the
highest sampling rate to the resolution of the parameter with the lowest sampling rate.
Also, models my not require the highest sampling rate.
When averaging data it is important to define what interval a specific time stamp

relates to. From a physical point of view the central average is to prefer, i.e.

〈x〉CA(t) =
1

n+ 1

n/2∑
i=−n/2

x(t+ i∆t). (2)

However, for real time operation this will not work as the data points after t does not
exists. Therefore, the lagging average shall also be available

〈x〉LA(t) =
1

n+ 1

0∑
i=−n

x(t+ i∆t). (3)

Finally, one may also use the following average defined as

〈x〉FA(t) =
1

n+ 1

n∑
i=0

x(t+ i∆t). (4)

The data from the Space Environment Center (SEC) and the OMNI set are following
averages.
Any data gaps that exist in the time series that are averaged will also be present in

the resulting time series. This means that if a times series with five minute resolution
is averaged to one hour resolution, and if there is a NaN for one point, then that one
hour interval will also be a NaN. If this is to be avoided the time series should first be
interpolated to remove any NaN’s.
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4.1.4. Error measures

To asses the performance of a model several different error measures exist.
The root-mean-square error (RMSE) is defined as

RMSE =

√√√√ 1
n

n∑
i=1

(xi − yi)2. (5)

Standard deviation (σ).
Skill score.
Prediction efficiency.

4.1.5. Coordinate transformations

4.2. Linear correlation

4.3. Superposed epoch analysis

An efficient way to examine if there are trends in a parameter associated with a list
of events is to use superposed epoch analysis. For this one needs a list of events and the
size and location of the analysis window. Assume we have a list of anomalies at times

ti , 1 ≤ i ≤ m. (6)

Next, we set the analysis window to start at

t
(s)
i = ti + p∆t, (7)

and end at
t
(e)
i = ti + q∆t. (8)

Generally p < 0 and q ≥ 0 so that the window start before the event and end at or after
the event. The sample interval for the parameter is ∆t. A matrix is created from the
parameter x(t) that should be superposed as

Xij = x(t(s)i + j∆t) , 0 ≤ j ≤ n, (9)

where n = q − p. In the above it is assumed that the event times ti are positioned at
the sample times of the parameter x(t). If this is not the case the event times are easily
moved to the sample times by rounding the event time to the closest sample time. Then,
the final step is to calculate the superposed values

sj =
m∑

i=1

Xij, (10)

or alternatively the superposed average

ŝj =
1
m

sj . (11)
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If there are any data gaps in the original time series x(t) the matrix Xij will contain
NaN’s at the corresponding positions. The value sj at position j will then have a NaN
if one or more rows of Xij contain a NaN at position j. Obviously, if there are a
large number of events (m large) then the probability that sj will only contain NaN’s
increases. Therefore, it is desirable to replace data gaps with interpolated values.

4.4. Pattern search

4.5. Determining the best prediction model
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