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1 Introduction

Here we examine the prediction of GOES-08 electron fluxes from OMNI solar
wind data. All data are 1 hour averages. The electron flux are measured at
the energy levels >0.6 MeV and >2 MeV. The model will only use the solar
wind data for its inputs. This means that for any given time the model will
be able to predict the electron flux for any local time.

2 Data

The OMNI data fields selected are: total magnetic field B, By- and Bz-
magnetic field components in GSM coordinates, particle density n, and ve-
locity V . The OMNI data are one hour averages where each time stamp
indicates the beginning of the interval, thus time 0 is the interval [0,1], time
1 the interval [1,2] and so on.

The GOES-08 database currently used extends over the years 1995 to
1999 and contain 5 minute average electron fluxes at the >0.6 MeV and >2
MeV electron levels. The data are averaged into one hour averages with the
time stamps also indicating the beginning of an interval.

3 Analysis

3.1 The OMNI data

Over the time 1995 to 1999 the best data coverage is for the period June
1995 to July 1996. During that period there are about 600 data points with
48 hours contiguous data for each month. The maximum number of points
per month is about 24 × 30 = 720.

3.2 The GOES-08 electron data

3.3 Correlation between OMNI and GOES data

We calculate the linear correlation between two variables for different time
shifts. The linear correlation between two variables x and y is

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
, (1)

where x̄ is the mean of the xi’s and ȳ is the mean of the yi’s.
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Calculating the linear correlation between two sets of variables gives an
overall feel their relations. The xi’s are one of the OMNI solar wind parameter
at time ti + τ and the yi’s are one of the GOES electron energies at time ti.
The time shift τ is used to study the delayed response of the GOES data with
respect to the OMNI data. The correlation coefficient r becomes a function
of τ which is varies over the interval -100 hours to +100 hours. The result is
shown in Figure 1.

We see that the instantaneous linear correlation between a solar wind pa-
rameter x(t+τ ) and the GOES electron flux y(t) is strongest for the velocity.
The correlation peaks at τ ≈ −25 hours for the > 0.6 MeV electron flux (up-
per left panel of Figure 1) and at τ ≈ −50 hours for the > 2 MeV electron
flux (upper right panel). The density is the second most important and is
anticorrelated with a peak at τ ≈ −10 hours for the > 0.6 MeV electrons
and τ ≈ −20 hours. The magnetic field show a very weak correlation to the
electron flux.

We can also see from Figure 1 that the correlations are stronger at times
when the GOES satellite is in the local noon sector than in the local midnight
sector. Typically the noon values are a factor of ?? higher than the midnight
values.

To conclude we see that there is clear relationship between the instan-
taneous solar wind velocity and density with the GOES electron flux. This
relation is stronger at local noon than at local midnight. The instantaneous
linear correlation between the solar wind magnetic field and the electron flux
is weak or non-existant.

4 The model

The time scales on which the magnetosphere responds to the solar wind
changes from minutes to days. The shortest time scale that we use here
is one hour. To model a dynamic system we need both the current values
and past values. The standard approach for a feed forward neural network
(FFNN) is to construct a time delay line of the input data. For the prediction
of the electron flux the solar wind input data should extend over several
days. The problem that occurs is that the data contain data gaps which
dramatically reduces the number of available training examples when the
time delay is extended over several days. To overcome this problem we
approach the solution in two steps: 1) first we model the long-term response
(days) of the electron flux using daily average solar wind data, 2) then we
introduce the short-term response using hourly solar wind data with a shorter
time delay line.
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Figure 1: The figure show the linear correlation between the OMNI solar
wind data and the GOES electron data for time offsets τ from -100 hours to
+100 hours. The top left panel is the >0.6 MeV electron data for all local
time sectors, while the bottom left is data for only local time 11. The top
right panel is the >2 MeV electron data for all local time sectors, while the
bottom right is data for only local time 11.
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4.1 The daily variation

First we try to find the optimal network for the prediction of the daily varia-
tion. On time scales of days only the density and velocity show a large degree
of variation. The Bz component has structures that typically only survive for
up to 10 hours, so a daily average will effectively remove the variation and
the average will be around zero. The By variation is also on time scales of
hours. However, the daily average By will be some positive or negative value
depending on the IMF polarity, and not close to zeros as the Bz component.
To cunclude, we see that the daily averages of the density and the velocity
are of importance, while the daily average magnetic field is not.

The inputs to the network are the running daily average density and ve-
locity, and the local time of the GOES satellite. The average of one parameter
is

〈x〉(t) =
1

24

0∑
s=−23

x(t + s), (2)

where t and s are in hours and x can be subsistuted for n or V . The local
time is coded into a 24 element vector l = (l0, l1, . . . , l23) so that

li =

{
1 i ≤ h < i + 1
0 otherwise

, 0 ≤ i ≤ 23, (3)

where h is the local time. The coding will thus generate a vector with 23
zeros and a one at the row corresponding to the same local time. To capture
the time evolution we create a time delay line of the density and velocity.
The input vector thus becomes

x(t; t1, t2) =




x1
...

xn


 =




〈n〉(t + t1)
...

〈n〉(t + t2)
〈V 〉(t + t1)

...
〈V 〉(t + t2)

l0
...

l23




, (4)

where t1 and t2 marks the start and end in hours, respectively, of the time
delay window. E.g. with t1 = −7 · 24 and t2 = −2 · 24 means that the time
window extends over 6 days with the last used input is 2 days back, thus
producing 2 day ahead predictions.
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The output of the model is the GOES-08 > 0.6 Mev or > 2 MeV electron
flux. The mapping from input x to output y is

y(t) = F (x(t; t1, t2)) + r(t). (5)

The optimization of the neural network F consists of finding the number of
hidden neurons, the weight values, and the input time window t1 and t2 so
that the residual r(t) is minimized. The network has the following form

F (x) =
m∑

i=1

vi tanh(
n∑

j=1

wijxj + bi) + a, (6)

where vi and wij are the weights, and a and bi are the biases. The network
has m hidden neurons and n inputs. Thus, the network has a linear output
transfer function and a tanh hidden transfer function.

When the optimal network, using daily solar wind density and speed as
inputs, has been determined we can use this information to proceed with the
hourly input data.

4.2 The hourly variation

We expect that also the hourly variation of the solar wind will influence the
evolution of the magnetospheric electron flux. From the previous section we
have removed the slow variation of the electron flux that can be associated
with the daily average solar wind density and velocity.

The second network is trained to learn the residual from the first network
(Equation 5)

r(t) = G(z(t)) + e(t) (7)

where e(t) is the final error. The input is

z(t) =




z1
...
zq


 =




n(t + s1)
...

n(t + s2)
V (t + s1)

...
V (t + s2)
Bz(t + s1)

...
Bz(t + s2)

l0
...

l23




, (8)
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where now the solar wind parameters are hourly averages, and s1 and s2 mark
the start and end times, respectively, of the input window. The network G
has the same form as network F in Equation 6, thus

G(z) =
p∑

i=1

vi tanh(
q∑

j=1

wijzj + bi) + a. (9)

The weights v and w are of course different from those in Equation 6. The
network has p hidden neurons and q input neurons. The final output of the
two networks is

y(t) = F (x(t)) + G(z(t)) + e(t). (10)

5 Preprocessing

5.1 Data gaps

5.2 Training, validation, and test sets

5.3 Normalization

The solar wind data typically have a range of values that varies over a mag-
nitude or less. Typical ranges for the density are 0 to 50 cm−2, velocity 250
to 800 kms−2, Bz component ±10 nT. The data are normalized to lie in the
range ±0.8 to fit the range of the tanh function.

The electron flux, on the other hand, show a large degree of variation
from 10−1 to 105 cm−2s−1sr−1 for the > 0.6 MeV electrons and 10−1 to 104

cm−2s−1sr−1 for the > 2 MeV electrons. Transforming the > 2 MeV electrons
from the range [0, 104] to the range [−0.8,+0.8] will result in a network that
can predict the high values but not the low. E.g., assume that the network
has an error of 5%, then the error will be 500 and the low values will be
totally neglected. To solve this we may instead take the logarithm of the
e-flux. Both the low and high values will be modelled, however, the high
values will be slightly worse modelled as compared to the linear transform.
A third approach could be to use a semilogarithmic scaling. Our approach
here will be the use of the logarithmic transformation.

The normalization of the input and output data are summarized in Ta-
ble 1.
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Table 1: The normalization of the input and output data. The table shows
for each parameter whether linear or logarithmic transformation is used. The
Low value is scaled to -0.8 and the High value to +0.8.

Parameter Transformation Low High
n linear 0 40
V linear 250 800
Bz linear -10 10

> 0.6 MeV logarithmic ? ?
> 2 MeV logarithmic 10−1 105

6 Results

First, we find optimal time delay window that is needed using daily average
solar wind density and velocity. Several different networks are trained by
varying the start and end times of the time delay window, and varying the
number of hidden neurons. Then, after the optimal daily model has been
found, the hourly data are introduced. As for the daily models, the optimal
input window and optimal number of hidden neurons are determined. The
two models are then combined to produce the final predictions.

6.1 The > 0.6 MeV electron flux model

6.2 The > 2 MeV electron flux model

We explore the parameter space by letting t1 and t2 be varied from -10 days to
0 days. We also let the number hidden neurons m attain the values 3, 5, and
10. For each combination of t1, t2, and m a network is trained on the data in
the training set. The performance of the network is continuosly monitored
using the validation set, and when the validation set error starts increasing
the training is stopped. The validation RMS errors and correlations are
shown in Figure 2 and Figure 3. Each dot represents the validation error or
correlation calculated from each network. The upper panels show the results
as a function of t1 and the lower panels as a function of t2. The network that
gives the minimum error and maximum correlation is marked with a circle.
For each t1 in the figures the range of dots represents different combinations
of t2 and m.

The optimal network (circle) has t1 = −8 days, t2 = 0 days, and m =
10. However, for a real-time application this model would only produce
nowcasting as t2 = 0. If we instead choose the network with t2 = −1 day
we are able to forecast one day ahead. From the figures we also see that
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Table 2: Summary of the results for the optimal network (NET 1) and the
second optimal network (NET 2). The root-mean-square error (RMSE) and
the linear correlation (CORR) are calculated for the training, validation, and
test sets. The RMSE has units of electronscm−2s−1sr−1.

Network t1 t2 m RMSE CORR Data set
1.09 · 103 0.843 Training

NET 1 -8 0 10 1.32 · 103 0.789 Validation
1.24 · 103 0.806 Test
1.09 · 103 0.842 Training

NET 2 -9 -1 5 1.33 · 103 0.786 Validation
1.31 · 103 0.786 Test

the networks at t2 = −1 and t2 = 0 gives similar results. The root-mean-
square errors (RMSE) and linear correlations (CORR) for the two networks
are summarized in Table 2.

We thus use the NET 2 model and now introduce the hourly solar wind
plasma and magnetic field data.

7 Discussion

8 Conclusion
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