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Summary

This document describes the models that will produce forecasts of the rate-of-change (∆H) of the
horizontal components of the local geomagnetic field in South Sweden based on ACE real time solar
wind data.

It is clear that predicting ∆H with one minute resolution is with current knowledge impossible.
Therefore, we motivate the use of temporal root-mean-square (RMS) ∆H formed over 10 minute
intervals. A resolution of 10 minutes has been found to be a good trade off between high resolution
and accurate forecasts. The optimal forecast lead time is 60 minutes and the correlation between
model output and observed geomagnetic data is 0.80 ± 0.05 in log RMS∆H and ? in RMS∆H.

[Text to be added on ”Computed ∆H in a dense grid over South Sweden.]

Finally, we provide a linear model relating RMS ∆H at Brorfelde, Denmark, and Uppsala, Sweden,
to RMS GIC at a single location. There is also a close linear relation between RMS GIC and MAX
GIC, where the latter is the maximum GIC in a 10 minute interval. This is useful as an estimate
of the maximum GIC that will occur.
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Acronyms

ACE Advanced Composition Explorer

ANN Artificial Neural Network

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

ETM Exponential Trace Memory
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URD User Requirements Document

WP Work Package
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1 Introduction

This document describes a module for direct solar wind – dH/dt that shall be a part of the GIC
Pilot Project [1]. The requirements have been identified in the User Requirements Document [2].
The purpose of the project is described in the URD as:

The space weather refers to conditions on the Sun and in the solar wind, magneto-
sphere, ionosphere, and thermosphere that can influence the performance and reliability
of space-borne and ground-based technological systems, and can endanger human life
and health. The space weather can at times induce currents in electrical power grids
generally known as GIC (geomagnetically induced currents).

The purpose of this project is to provide a software package that can be used for
realtime forecasting of GIC in the Swedish power grid. The software shall be used
by power grid operators and tested for a one-year period. During this period, the
accuracy and reliability of the software shall be determined, and the usefulness of the
software shall be formulated through a cost-benefit analysis. Another aspect is the
need to educate the public and decision makers of the potential hazards of GIC and
how forecasts can help to mitigate the effects. Thus, the software shall also have a
public part.

Our approach to develop a forecast model for GIC follows two alternative routes. In the first
approach, described in this document, a model is develop that predicts the time derivative of the
ground geomagnetic field. Using the predicted ground magnetic field the GIC can then be computed
[3]. In the second approach a model is developed that predicts the GIC directly from solar wind
data [4]. It is then possible to explore the difference between the two techniques and to identify
the weakest link.

In the following sections we describe the data used, the analysis of the data, and the development
of the model.
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2 Averages and prediction lead time

Having a physical time dependent parameter x(t) that is collected with a sampling interval ∆t
results in the time series xi. The corresponding time stamp ti marks the beginning of the interval
so that xi is the average of x(t) over the interval t ∈ [ti, ti+1] where ti+1 = ti + ∆t. Similarly, we
may have another variable y(t) sampled to yi. If we now wish to develop a model that predicts y
from x with some lead time τ we have ŷ(t+ τ) = f(x(t)), where ŷ is the prediction of y. This leads
to the discrete model

ŷi+n = f(xi) (1)

where τ = n∆t.

To understand the true forecast time assume that the current time is t0. The latest input is x−1

that has been collected over the time interval [t−1, t0]. With a forecast time of τ = n∆t we will
thus be forecasting yn−1 resulting in a true forecast time of τ ′ = τ −∆t. In order for the model to
perform actual forecasts we must have ∆t ≤ τ .

In the case of solar wind – magnetosphere coupling, part of the lead time is associated with the
solar wind travel time from L1 to Earth. In Figure 1 the travel time is shown for velocities in the
range [300, 1000] km/s. If we only consider velocities up to 830 km/s then it is possible to make
forecasts of 30 minutes. The ACE 2-minute average velocity exceeds 830 km/s in 27 events for the
period 1998 to current, and the maximum velocity is 980 km/s corresponding to a travel time of
25 minutes. Thus, using a 30 minutes forecast lead time will capture most of the events, and for
higher velocities the lead time will be shifted by mostly 5 minutes.
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Figure 1: The figure shows the prediction lead time as a function of velocity as measured at L1.
The straight lines marks the velocities at lead times of 30 and 60 minutes, respectively.

The ACE spacecraft is not located exactly on the Sun-Earth line but is on an orbit around L1.
Therefore, the spacecraft does not measure the solar wind directly upstream from the Earth which
will introduce uncertainties on the time of arrival and evolution of solar wind structures. Temporal
averaging will reduce the uncertainties and a resolution of ∆t = 10 minutes is a good trade-off
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leading to a true forecast time of 30 − 10 = 20 minutes.

3 The data

A database has been set up as described in the TN of WP 200. Here we make a short summary of
the data that are used in this TN.

3.1 Solar wind data

The solar wind plasma and magnetic field data comes in two different temporal resolutions [5]: 16
second sampling of the magnetic field, and 64 second sampling of the plasma. Both the GIC and
the geomagnetic data have 60 second resolution. The real-time solar wind data at SEC [6] are also
given with 60 second resolution, where the plasma data have been resampled from 64 seconds to
60 seconds. However, resampling the data introduces artificial frequencies that result in differences
between longer temporal averages formed from the 64- and 60-second time series. E.g., forming
5-minute averages from the 64- and 60-second data may result in occasional differences of more
than 8 cm−3 in the density and more than 20 km/s in the velocity. Thus, resampling the data from
64 seconds to 60 seconds should be avoided for the analysis and model development.

3.2 Local geomagnetic field

We select observed geomagnetic from Brorfelde (11.67◦,55.63◦) and Uppsala (17.35◦,59.90◦) as
these sites are closest to the region of Sweden we currently shall study. As stated in WP 300 the
prime quantity to use when calculating GIC is the time derivatives of the horizontal magnetic field
components dX/dt and dY/dt. The derivatives are approximated using the forward difference

∆X(t) = X(t + 1) − X(t), (2)

where t is in minutes and X is the north-south horizontal magnetic field component. Similarly we
have

∆Y (t) = Y (t + 1) − Y (t), (3)

east-west component.

3.3 Computed geomagnetic field in a dense grid

[Text to be added.]
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3.4 GIC data

As described in the database TN [5] the recorded GIC data covers three periods: 1998-09-17 –
10-28, 1999-08-15 – 11-14, and 2000-01-22 – 08-13. The first period has very few data gaps, while
for the last two periods it has been stated that data has only been collected when GIC> 1 Ampere.
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4 Analysis

4.1 A case study – September 1998

[Text to be added.]

4.2 Auto-correlation

The auto-correlation for T = 2-minute average solar wind and ∆X show very different characteris-
tics. The velocity V has an auto-correlation close to 1 for time lags ranging from 0 to 40 minutes.
Thus, two measurements of V separated by 40 minutes are most of the time close to equal. Only
for occasional shocks there might be a big difference in V (t) and V (t+2). Similarly, the density n is
also highly correlated with a correlation of almost 0.9 at 40 minutes. The magnetic field component
Bz has an auto-correlation that drops of quicker, but it is still above 0.6 at 40 minutes lag. Finally,
the auto-correlation of ∆X is close to 0 for all time lags, thus it is not possible to predict ∆X(t+τ)
from ∆X(t) with a linear model, for any τ ≥ 2 minutes.

4.3 Wavelet variance – estimating the spectral density of ∆X and ∆Y

As already mentioned, any temporal averaging of ∆X is not meaningful because of the weak auto-
correlation. Therefore we will instead study the level of disturbance in ∆X and its relation to the
solar wind. In the paper by [7] models where developed for the coupling from the solar wind to
30 minute averages of the absolute value |∆X|. Using averages of |∆X| will capture the average
disturbance level but the spectral information is lost.

Using a discrete wavelet transform (DWT) the ∆X can be decomposed into signals, called details
and smooth (or approximation), that are associated with different scales, where the scale corre-
sponds to a wavelength band. The decomposed signals can thus be thought of being a band pass
filtered versions of ∆X. The DWT preserves the power in the signal but it is not time invariant,
i.e. the DWT of a time shifted ∆X is not equal to the time shifted DWT of ∆X. To ensure time
invariance we use a modified DWT, called the Maximum Overlap DWT (MODWT) [8]. But with
the MODWT the sum of the power of the smooth and details are not equal to the power in ∆X.
However, the power is preserved in the wavelet coefficients.

We apply the MODWT using the Daubechies wavelet of order 4 on one-minute ∆X for all data in
1998 resulting in the wavelet coefficients Wj,t (details) and Vt (smooth), where the level is j ∈ [1, 7]
and time is t ∈ [0, 525599]. Level j is associated with scale

τj = 2j−1. (4)

As the time resolution is one minute the scale is also in minutes. The variance, or power, at level
j is

ν2
j =

∑

t

W 2
j,t (5)
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and the power conservation means that

∑

t

∆X2
t =

∑

j

ν2
j +

∑

t

V 2
t . (6)

The signal at level j is associated with frequencies in the range

fj ∈
[

1

2j+1
,

1

2j

]

=

[

1

4τj
,

1

2τj

]

. (7)

Thus, if we compute the power spectrum S(f) of ∆X with the Fourier transform then the wavelet
variance

ν2
j ≈ 2

∫

1/2j

1/2j+1

S(f)df (8)

where the factor 2 in front of the integral comes from the fact the S(f) exist for f ∈ [−1/2, 1/2] and
is symmetrical around f = 0. In Figure 2 the estimated power spectrum from the MODWT and
the DFT are shown (top panel). We see that there is a close agreement between the two estimates.
The power in ∆X is concentrated to small scales (high frequencies), which becomes more clear
in the two lower panels. The relative power (bottom left panel) is for the first four scales: 32%,
25%, 18%, and 13%. The cumulative relative power (bottom right panel) is 88% using only the
wavelet coefficients up to level 4. This is in agreement with our previous conclusion that we need
the one-minute data to capture the variance in ∆X. We also see that almost 90% of the signal is
found at scales of τ4 = 24−1 = 8 minutes corresponding to frequencies higher than 1/32 min−1.
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Figure 2: The figure shows the spectral density, or power spectrum, for ∆X normalised with the
variance of ∆X. The labels have the following meaning: ”All data”, all data in 1998; ”Storm data”,
use only one-day periods that contain events where ∆X > 20 nT/min; ”SDF from FFT”, estimate
using a Fourier transform.

We repeat the same analysis for ∆Y at Brorfelde, and the result is shown in Figure 3. The
spectrum is more flat up to level 4 after which the power decreases rapidly (top panel). The storm
time spectrum has a shape similar to the general spectrum (bottom left) and the relative power for
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the first 4 levels are: 26%, 20%, 19%, and 18%. The four levels together capture 83% of the power
and at level 5 it goes over 90% (bottom right).
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Figure 3: The figure shows the spectral density, or power spectrum, for ∆Y normalised with the
variance of ∆Y . The labels have the following meaning: ”All data”, all data in 1998; ”Storm data”,
use only one-day periods that contain events where ∆Y > 20 nT/min; ”SDF from FFT”, estimate
using a Fourier transform.

4.4 Time series of the wavelet variance

Equation 6 states that the power in ∆X equals the sum of the power of the wavelet coefficients
taken over all times t. But our goal is to develop a model that predicts the variance of ∆X as a
function of time and generally

∆X2
t 6=

∑

j

W 2
j,t + V 2

t . (9)

However, the correlation C of ∆X2 and ∆X
2

=
∑

j W 2
j,t + V 2

t is reasonable. For the one-minute

values we have C(∆X2,∆X
2
) = 0.93 and C(

√
∆X2,

√

∆X2) = 0.86. Summing over 10 minute in-

tervals,
∑ta+10

t=ta
∆Xt, the correlation increases to C(∆X2,∆X

2
) = 0.996 and C(

√
∆X2,

√

∆X
2
) =

0.988. For ∆Y the correlation for one-minute data is C(∆Y 2,∆Y
2
) = 0.89 and C(

√
∆Y 2,

√

∆Y 2) =

0.85. Using 10 minute data we have C(∆Y 2,∆Y
2
) = 0.989 and C(

√
∆Y 2,

√

∆Y 2) = 0.982. So
although Equation 9 is true the 10 minute variances of the wavelet coefficients are still good ap-
proximations to the variances in ∆X and ∆Y .

From Figures 2 and 3 we get the general shape of the distribution of power at different scales.
Assuming that the power distribution is constant over time we may estimate the power at different
levels (or frequencies) using the 10 minute RMS of ∆X . In the next section we develop models
that predicts the 10 minute RMS values.
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However, the assumption of constant power distribution is not completely valid; there may be
considerable differences between the variances at different scales at different times. For future work
one should consider developing models that directly predict the 10 minute variance at different
scales. Let

ν2
j,t =

t+9
∑

t′=t

W 2
j,t′ (10)

be the 10-minute variance of the wavelet coefficients at level j, and let VAR(∆X) be the 10 minute
variance of ∆X. We then compute the correlation C(VAR(∆X), ν2

j ) and the result is shown in
Figure 4. It is clear that VAR(∆X) is a good approximation for the power at the two lowest scales,
where also most of the power is. But with increasing scale the correlation drops.
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Figure 4: The figure shows the linear correlation between VAR(∆X) and ν2
j .

4.5 Geomagnetic field and GIC

The GIC data consist of measurements of currents flowing through a transformer neutral. The
GIC may result from two different sources: space weather induced and non-space weather induced.
To explore this we compute the linear correlation between the rate-of-change of the East-West
component of the geomagnetic field dX/dt and the GIC. A time lag is introduced between dX/dt
and GIC, and the both unfiltered and filtered GIC are used. For the filtering the DB1 wavelet is
used. The wavelet approximation A and detail D are related to the original signal GIC as

GIC = A1 + D1 = A2 + D2 + D1 = Al +
l

∑

n=1

Dn, (11)

where l is the level. The filtered GIC at level l is computed as

GICl =

{

GIC l = 0
∑l

n=1
Dn l > 0

(12)
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where Dn is the detail at level l. The signal Al contains only periods longer than 2l minutes and thus
GICl is the high frequency component with periods shorter than 2l minutes. In Figure 5 we show
the correlation between the Brorfelde (BFE) data and the filtered GIC data for the period 1998-09-
17 to 1998-10-28. The maximum correlation is reached at a time lag of 2 minutes and filtering level
5. This means that there is a slowly varying component in GIC (period> 25 = 32 minutes) that is
not related to dX/dt. The same analysis is repeated for Upsala (UPS) and the result is shown in
Figure ??. The maximum correlation is now found at a time lag of 3 minutes and filtering level 7,
corresponding to 27 = 128 minutes.
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Figure 5: Correlation between dX/dt from Brorfelde (BFE), and Uppsala (UPS), and the GIC data
for different levels and time lags. The level is the wavelet filtered GIC data at the corresponding
level, where level 0 means unfiltered data.

We now set the filtering level to 6, which corresponds to 64 minutes, and look at the filtered GIC
data. Two example periods are shown in Figures 6 and 7. In the top panels are shown a 24-hour
interval around 1998-08-25 and 1998-10-18, respectively. In the bottom panels are shown a close-
up covering 3 hours. The two examples have quite different characteristics. The first example
(Figure 6) contains strong GIC reaching above 50 A. It is difficult to see any difference between
the raw GIC and the filtered GIC in the top panel. In the bottom panel the differences becomes
visible. The second example (Figure 7) is a much calmer period with maximum GIC of 12 A.
However, there is a clear bias of 5-6 A in the raw GIC that is removed in the filtered GIC. For the
whole period, 1998-09-17 to 1998-10-28, the raw GIC has a mean value of 1.22 A and a standard
deviation of 2.2 A, while the filtered GIC has a mean of 0 and a standard deviation of 1.8 A.

The shift of 2 to 3 minutes between the geomagnetic data and the GIC data is at the moment
unexplained. It could be due to different time stamping in the different sets. However, it is not
crucial in this work as we will use 10 minute data.

The occasional bias term in the GIC is probably related to changes in the power grid configuration
affecting the GIC measurements. Again, as we will use 10 minute data, and especially variances of
the data, any bias term will be removed in the process. This will be discussed in the next section.
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Figure 6: Correlation between dX/dt from Upsala (UPS) and the GIC data for different levels and
time lags. The level is the wavelet filtered GIC data at the corresponding level, where level 0 means
unfiltered data.
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5 Neural network model

Here we describe the neural network model for the prediction of the 10-minute RMS ∆X and ∆Y
at Brorfelde and Uppsala.

5.1 10-minute resolution data

As described in Section 2 we will use data with 10 minute resolution in the forecast model. First
we have the 10-minute average as

µ(s) =
1

10

10s+9
∑

t=10s

x(t). (13)

The average captures quite well the dynamics in the solar wind. Another quantity that is interesting
is the standard deviation

σ(s) =

√

√

√

√

1

9

10s+9
∑

t=10s

(x(t) − µ(s))2 (14)

as this is related to turbulence and strong gradients that are not seen in the average. Finally, we
also have the root-mean-square (RMS) value

r(s) =

√

√

√

√

1

10

10s+9
∑

t=10s

x2(t) (15)

which is related to the power in the signal. The solar wind data are resampled using the average
and standard deviation where x(t) is replaced by Bz, n, and V . The rate-of-change of the local
geomagnetic field is resampled using the RMS where x(t) is replaced with ∆X and ∆Y at Uppsala
and Brorfelde.

5.2 Architecture

The neural network takes solar wind data and time as input and predicts the log RMS ∆H,
where ∆H is ∆X or ∆Y at Brorfelde or Uppsala. The input is 10 minute averages and standard
deviations. The inputs are collected into the input vector

X = [d1, d2, l1, l2, µBz, σBz , µn, σn, µV , σV ] = [X1, . . . ,X10] , (16)

where

[d1, d2] =

[

sin
2πDD

365
, cos

2πDD

365

]

(17)

are the sine and cosine of the decimal day (DD),

[l1, l2] =

[

sin
2πLT

24
, cos

2πLT

24

]

(18)
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are the sine and cosine of the local time (LT), and the µ• and σ• are the mean and standard
deviation of the solar wind data. The inputs are then normalised according to

xi =
Xi − ai

bi
(19)

where

a = [0, 0, 0, 0, 0, 0.92, 8.0, 0.61, 490, 4.6] (20)

b = [2.1, 2.1, 2.1, 2.1, 18, 3.6, 24, 3.1, 320, 15]. (21)

The normalisation constants have been chosen so that the mean of xi is approximately 0, and the
standard deviation is approximately 0.3. The neural network can now be written as

ŷ(t + τ) = f(x(t), NH ) (22)

where τ is the prediction time, NH the number of hidden neurons, and ŷ is the network output.
To capture the dynamics in the system we use internal feed-back units. The weights in network
f are then adjusted so that the error between the desired output y and the network output ŷ is
minimised. The desired output is the normalised log square root of RMS dB according to

y =
log RMS∆H − α

β
. (23)

Four different networks are developed where ∆H is replaced with BFE ∆X, BFE ∆Y , UPS ∆X,
and UPS ∆Y . The normalising constants are found in the table below.

Table 1: The normalising constants for the four models.

Model α β

BFE ∆X 0.064 1.2
BFE ∆Y -0.0079 1.2
UPS ∆X 0.020 1.4
UPS ∆Y -0.062 1.3

5.3 Training and optimisation

[Text to be added.]

5.4 Pruning

[Text to be added.]
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Figure 8:

5.5 Increasing the prediction horizon

[Text to be added.]

5.6 Models for ∆X and ∆Y for interpolated data

[Text to be added.]
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6 Forecasting of GIC

6.1 Empirical linear model from RMS ∆X and ∆Y

[Text to be added.]

6.2 Theoretical model from RMS ∆X and ∆Y

[Text to be added.]

7 Example predictions

7.1 ∆H

[Text to be added.]

7.2 GIC

[Text to be added.]
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